中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (10): 1446-1451.doi: 10.3969/j.issn.2095-4344.2016.10.011

• 干细胞移植 stem cell transplantation • 上一篇    下一篇

立体定向脑内移植神经干细胞改善颅脑损伤大鼠的神经运动功能

刁新峰1,程立敏2,薛 咏1,胡成旺1,蔡中立3   

  1. 南阳医学高等专科学校第一附属医院,1神经外科,2神经内科,3胸外科,河南省南阳市 473000
  • 收稿日期:2016-02-04 出版日期:2016-03-04 发布日期:2016-03-04
  • 作者简介:刁新峰,男,1981年生,河南省省邓州市人,汉族,2004年郑州大学毕业,主治医师,主要从事神经外科疾病的研究与治疗。

Stereotactic transplantation of neural stem cells into the brain improves motor function of craniocerebral trauma rats

Diao Xin-feng1, Cheng Li-min2, Xue Yong1, Hu Cheng-wang1, Cai Zhong-li3   

  1. 1Department of Neurosurgery, 2Department of Neurology, 3Department of Thoracic Surgery, First Affiliated Hospital of Nanyang Medical College, Nanyang 473000, Henan Province, China
  • Received:2016-02-04 Online:2016-03-04 Published:2016-03-04
  • About author:Diao Xin-feng, Attending physician, Department of Neurosurgery, First Affiliated Hospital of Nanyang Medical College, Nanyang 473000, Henan Province, China

摘要:

文章快速阅读:

文题释义:

神经干细胞的治疗作用:①细胞替代:补充缺失神经元和胶质细胞,促进神经环路重建。②递质补充:分泌多巴胺递质。③营养支持:分泌多种神经营养因子,改善局部微环境并启动再生相关基因的表达,完成神经修复。④细胞动员:脑室室管膜下区细胞、海马结构部位内源性干细胞增生。⑤结构整合:整合到宿主移植部位,实现真正神经再生。

立体定向技术:在立体定向仪的引导下,将特制的射频电极、干细胞针等手术器械准确送到颅内的特定部位或靶点,成为治疗疾病或诊断疾病的一种方式。现代立体定向技术是在传统立体定向技术的基础上,借助于先进的CT、MRI图像融合技术和立体定向图谱匹配系统进行定位治疗的一种崭新的技术,使治疗更安全更有效。

 

背景:细胞替代治疗是重建受损神经系统组织结构,恢复神经系统功能的一种有效策略,具有极为广阔的应用前景。
目的:探讨立体定向脑内移植神经干细胞对颅脑损伤大鼠神经运动功能的影响。
方法:将20只雄性SD大鼠随机分为研究组和对照组,每组10只,应用改良的自由落体方法制备脑损伤模型,伤后1 d研究组大鼠脑实质内移植胚胎神经干细胞,对照组大鼠注射等量不含干细胞的培养液。在脑损伤前1 d、伤后1 d、1周、2周运用神经学缺损评分法评价大鼠运动神经功能。移植后2周,取脑组织分别行苏木精-伊红染色、抗BrdU、胶质纤维酸性蛋白、β微管蛋白Ⅲ和酪氨酸羟化酶免疫组化染色。

结果与结论:伤后1,2周研究组大鼠的神经学缺损评分均显著低于对照组(P < 0.05)。研究组大鼠受损脑组织中有较多的BrdU阳性神经干细胞,一部分细胞呈胶质纤维酸性蛋白、β微管蛋白Ⅲ和酪氨酸羟化酶阳性表达,对照组大鼠受损脑组织中未见有BrdU阳性细胞。实验结果表明,立体定向脑内移植神经干细胞可以在颅脑损伤灶中增殖分化,进而显著改善大鼠的神经运动功能。 

 ORCID: 0000-0002-2828-950X(刁新峰)

关键词: 干细胞, 移植, 神经干细胞, 立体定向脑内移植, 颅脑损伤, 增殖, 分化

Abstract:

BACKGROUND: Cell replacement therapy as an effective strategy for reconstruction of the central nervous system has very broad application prospects.
OBJECTIVE: To investigate the effect of stereotactic transplantation of neural stem cells into the brain on the neuromotor function of craniocerebral trauma rats.
METHODS: Twenty male Sprague-Dawley rats were equivalently randomized into study and control groups. Animal models of craniocerebral trauma were made using the improved free-fall method in the rats. Then, model rats in the study and control groups were given parenchymal transplantation of embryonic neural stem cells and the same volume of culture medium with no stem cells at 1 day after injury, respectively. Neuromotor function of rats was assessed based on the neurological severity scores. At 2 weeks after transplantation, brain tissues were taken for hematoxylin-eosin staining, anti-BrdU, glial fibrillary acidic protein, β-tubulin III and tyrosine hydroxylase immunohistochemistry staining.
RESULTS AND CONCLUSION: The neurological severity scores in the study group were significantly lower than those in the control group at 1 and 2 weeks after injury (P < 0.05). In the study group, there were many BrdU-positive neural stem cells in the brain tissues, some of which were positive for glial fibrillary acidic protein, β-tubulin III and tyrosine hydroxylase; while in the control group, there was no BrdU-positive cell in the brain tissues. Experimental findings show that neural stem cells stereotactically transplanted into the brain can proliferate and differentiate in the brain lesion, and thereby notably improve the neuromotor function of rats with craniocerebral trauma.