中国组织工程研究 ›› 2015, Vol. 19 ›› Issue (38): 6205-6210.doi: 10.3969/j.issn.2095-4344.2015.38.025

• 材料力学及表面改性 material mechanics and surface modification • 上一篇    下一篇

血管张应力体外加载装置的研制

雷亚楠1,丁  皓1,2,兰海莲1,杨  乾1, 刘志琳3   

  1. 1上海理工大学医疗器械与食品学院,上海市  200093;
    2上海健康医学院,上海市  200093;3上海市第一人民医院,上海市  200080
  • 通讯作者: 丁皓,博士,教授,上海理工大学医疗器械与食品学院,上海市200093;上海健康医学院,上海市 200093
  • 作者简介:雷亚楠,女,1990年生,河南省洛阳市人,汉族,上海理工大学在读硕士,主要从事生物力学与康复工程研究。
  • 基金资助:

    上海市教育委员会科研创新项目(13YZ148)

     

The development of an in vitro loading device for vascular tensile stress

Lei Ya-nan1, Ding Hao1, 2, Lan Hai-lian1, Yang Qian1, Liu Zhi-lin3   

  1. 1School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; 
    2Shanghai University of Medicine & Health Sciences, Shanghai 200093, China; 3Shanghai General Hospital, Shanghai 200080, China
  • Contact: Ding Hao, M.D., Professor, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai University of Medicine & Health Sciences, Shanghai 200093, China
  • About author:Lei Ya-nan, Studying for master’s degree, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Supported by:

    the Scientific Research Innovation Project of Shanghai Municipal Education Committee, No. 13YZ148

摘要:

背景:国内外已经研制出多种体外细胞张应力加载装置,主要拉伸方法有矩形基底拉伸法、圆形基底变形法和4点弯曲梁加载法3种,其中圆形基底变形法虽能够很好的反映体内如肺泡的扩张、血管的脉动等真实情况,但该种加载过程中膜的应变是辐射对称的;4点弯曲梁加载法能够提供的应变范围很小,加载时间有限,应变调节比较困难。
目的:采用矩形基底拉伸法研制血管张应力体外加载装置。
方法:采用机电一体化设计研制血管张应力体外加载装置,由电源模块、控制模块、传动模块和数据采集模块4个部分组成,以硅胶片为基底材料,通过对电机旋转角度和转动速度的高精度控制,实现对硅胶膜片上的拉伸控制。
结果与结论:通过测试和试验,该装置可以满足试验所需的参数范围,能够在体外模拟出人体张应力环境,初步认为该张应力加载装置的研制是成功的,实现了:①装置有两种工作模式:应力模式和应变模式,解决了基底加载装置的硅胶片材还没有实现标准化的问题。②能实现张应力在0-5×105 Pa范围内的调节。③能实现张应变在0-40%范围内的调节。④能实现0-80次/min的拉伸频率的变化,并能控制拉伸时间。

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

关键词: 生物材料, 材料相容性, 心血管疾病, 张应力, 张应变, 加载装置, 弹性基底

Abstract:

BACKGROUND: After years of development, various in vitro loading devices for vascular tension stress have been created both at home and abroad, mainly including rectangular base stretching method, circular base deformation method and four-point bending beam load method. Although the circular base deformation method can well reflect the real situations in vivo such as the expansion of the alveoli and vascular pulsation, the strain on the membrane is actinomorphic. The four-point bending beam load method can just bring limited strain range and load time, along with a difficult strain regulation.
OBJECTIVE: To develop an in vitro loading device for vascular tension stress using the rectangular base stretching method. 
METHODS: This in vitro loading device for vascular tension stress developed according to mechatronics design consisted of power supply module, control module, drive module and data acquisition module. The device could 
achieve the tensile control on silicon diaphragm by high-precision control of the motor rotation angle and rotational speed.
RESULTS AND CONCLUSION: Through tests and experiments, the device could meet the required range of parameters and simulate in vitro human tensile stress environment, which is preliminarily considered to develop successfully, achieving that: (1) two work patterns: stress mode and strain mode so as to solve the standardization of silicone substrate as loading device; (2) tensile stress can be adjusted in a range of 0-5×105 Pa; (3) tensile strain can be adjusted in 0-40% range; (4) stretching frequency can be in the regulation of 0-80 times/min and the stretching time can be controlled.

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

Key words: Cardiovascular diseases, Silica Gel

中图分类号: