中国组织工程研究 ›› 2014, Vol. 18 ›› Issue (27): 4339-4344.doi: 10.3969/j.issn.2095-4344.2014.27.013

• 器官移植动物模型 organ transplantation and animal model • 上一篇    下一篇

镍钛螺簧牵拉大鼠第一磨牙向近中移动:正畸牙移动模型

段娇红1,张  扬2   

  1. 1解放军沈阳军区总医院口腔科,辽宁省沈阳市  110840;2中国医科大学口腔医学院,辽宁省沈阳市  110002
  • 出版日期:2014-06-30 发布日期:2014-06-30
  • 作者简介:段娇红,女,1976年生,黑龙江省哈尔滨市人,汉族,2013年中国医科大学口腔医学院毕业,博士,主治医师,主要从事低水平激光在口腔医学中的应用研究。

Mesial movement of the rat molars using Ni-Ticoil spring: a model of orthodontic tooth movement

Duan Jiao-hong1, Zhang Yang2   

  1. 1 Department of Stomatology, General Hospital of Shenyang Military Area Command, Shenyang 110840, Liaoning Province, China; 2 School of Stomatology & Affiliated Stomatological Hospital, China Medical University, Shenyang 110002, Liaoning Province, China
  • Online:2014-06-30 Published:2014-06-30
  • About author:Duan Jiao-hong, M.D., Attending physician, Department of Stomatology, General Hospital of Shenyang Military Area Command, Shenyang 110840, Liaoning Province, China

摘要:

背景:在有关正畸牙移动的实验中,动物模型的建立是关键,其中力值的选择、支抗的控制对实验结果的影响很大。
目的:在综合考虑各种因素的情况下,建立一个较完善的正畸牙移动动物模型。
方法:在20只Wistar大鼠上颌两个切牙牙根中部水平钻洞,用0.3 mm直径结扎丝从洞中穿过,将牙槽骨、两个切牙结扎在一起,将右上颌第一磨牙以0.2 mm直径结扎丝结扎,随机分为4组,在切牙和第一磨牙间分别置10,25,50 g Sentalloy镍钛螺簧,以切牙为支抗,拉第一磨牙向近中移动,以不加力的为对照组。加力后14 d苏木精-伊红染色观察第一磨牙牙体牙髓变化,并使用软件测量计算牙本质吸收相对深度。
结果与结论:10 g镍钛螺簧组牙骨质不规则吸收,压力侧牙周膜间隙变窄;25 g镍钛螺簧组压力侧可见牙骨质及牙本质不规则吸收;50 g镍钛螺簧组牙根可见明显的吸收,深达牙本质层。10 g螺簧组牙本质吸收相对深度与对照组相比差异无显著性意义(P > 0.05),其他各组之间牙本质吸收相对深度差异均有显著性意义(P < 0.05)。说明在大鼠两个中切牙牙根中部及牙槽骨处钻洞并用结扎丝结扎,使两个中切牙与牙槽骨成为一个整体,共同作为支抗,采用镍钛螺簧拉第一磨牙近中移动,可建立稳定、科学、可靠的正畸牙移动的动物模型。10 g力是大鼠第一磨牙近中移动所需的合适力值。



中国组织工程研究
杂志出版内容重点:肾移植肝移植移植;心脏移植;组织移植;皮肤移植;皮瓣移植;血管移植;器官移植组织工程


全文链接:

关键词: 实验动物, 组织构建, 口腔生物材料, 镍钛螺簧, 正畸牙移动, 正畸力, 螺旋弹簧, 第一磨牙

Abstract:

BACKGROUND: The establishment of model is very crucial in the orthodontic tooth movement experiment. The selection of force and controlling of anchorage may greatly affect experimental results.
OBJECTIVE: To establish an animal model for orthodontic tooth movement.
METHODS: Twenty Wistar rats were included in this study. The root of incisor teeth at upper jaw was drilled and then threaded with a ligature wire (0.3 mm diameter), therefore the alveolar bone and two incisor teeth were ligated. The first molar at right upper jaw was also ligated using a ligature wire (0.2 mm diameter). The experimental teeth were randomly divided into four groups. A Sentalloy closed-coil spring (10 g, 25 g, 50 g) was placed between the maxillary incisors and the maxillary first molar, respectively. Taking the incisor as the anchorage, the molars were given a mesial movement, and control group received no force. On day 14, the dental pulp, dentin and enamel were observed by hematoxylin-eosin staining. The relative depth of dentin resorption was analyzed with Image-Pro Plus software.
RESULTS AND CONCLUSION: A light force (10 g Ni-Ti coil spring) produced irregular enamel resorption and narrowed periodontal membrane space, whereas heavy force (25 g Ni-Ti coil spring) produced irregular dentin and enamel resorption, even heavier force (50 g Ni-Ti coil spring) produced apparent resorption at dental root, which affected the dentin. No statistical difference of the relative depth of dentin resorption was found between the 10 g group and the control group (P > 0.05). The data between other groups showed statistically significant differences (P < 0.05). The mechanical union of the incisors and the mandibular bone efficiently prevents the continuous eruption of the upper incisors, which maintains the anchorage stability. Using Ni-Ti coil spring, a stable, scientific and reliable model of orthodontic tooth movement can be established through mesial movement of the  first molars. The optimal force of 10 g is used to move the rat first molar mesially.



中国组织工程研究
杂志出版内容重点:肾移植肝移植移植;心脏移植;组织移植;皮肤移植;皮瓣移植;血管移植;器官移植组织工程


全文链接:

Key words: biocompatible materials, orthodontic anchorage, molar, models, animal

中图分类号: