中国组织工程研究 ›› 2018, Vol. 22 ›› Issue (22): 3563-3568.doi: 10.3969/j.issn.2095-4344.0886

• 材料力学及表面改性 material mechanics and surface modification • 上一篇    下一篇

冠状动脉支架在弯曲血管中的血流动力学分析

唐 丹,袁 泉,王志超,朱宏伟   

  1. 山东大学高效洁净机械制造教育部重点实验室,山东省济南市 250061
  • 收稿日期:2018-02-25 出版日期:2018-08-08 发布日期:2018-08-08
  • 通讯作者: 袁泉,教授,山东大学机械工程学院高效洁净机械制造教育部重点实验室,山东省济南市 250061
  • 作者简介:唐丹,女,1993年生,湖南省邵阳市新邵县人,汉族,山东大学机械工程学院在读硕士,主要从事CAD/CAE/CAM生物医学工程及流体力学等方面的研究。
  • 基金资助:

    国家自然科学基金(31170906)

Hemodynamic analysis of coronary stents in curved vessels

Tang Dan, Yuan Quan, Wang Zhi-chao, Zhu Hong-wei   

  1. Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, Jinan 250061, Shandong Province, China
  • Received:2018-02-25 Online:2018-08-08 Published:2018-08-08
  • Contact: Yuan Quan, Professor, Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, Jinan 250061, Shandong Province, China
  • About author:Tang Dan, Master candidate, Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, Jinan 250061, Shandong Province, China
  • Supported by:

    the National Natural Science Foundation of China, No. 31170906

摘要:

文章快速阅读:

 
文题释义:
血流动力学:指血液变形和流动的科学,其基本的研究对象是流量、阻力和压力之间的关系。由于血管是有弹性和可扩张性的管道系统,血液是含有血细胞和胶体物质等多种成分的液体而不是理想液体,因此,血流动力学除与一般流体力学有共同点之外,又有它自身的特点。对支架在血管内的血流动力学分析是评价其再狭窄率的重要指标。

壁面剪应力:体内和体外研究表明,冠状动脉支架植入人体后,在壁面剪应力小于0.5 Pa的区域,会有内膜增生、血栓的现象发生,即产生再狭窄,相反,高于此值的部分则不会有新生内膜出现。

 

背景:目前在支架植入的血液动力学仿真中,模拟的血管通常是直的,弯曲血管则没有被考虑。为使仿真结果具有可靠性,仿真的模型应更接近于实际情况。
目的:对弯曲血管内支架再狭窄率进行研究,建立更接近人体实际情况的弯曲血管模型,解释临床上弯曲血管内支架再狭窄率相对较高的现象。
方法:利用Creo5建模软件建立了冠状动脉支架的三维实体模型。借助于Ansys18.0有限元仿真软件通过布尔运算建立了弯曲冠状动脉(30°,45°,60°)支架的血液流场模型(弯管-支架流场),同时为了便于比较,建立了相同支架下直冠状动脉和支架的血液流场模型(直管-支架流场)。通过流体仿真研究,对比相应的低壁面剪应力区WSS,即WSS< 0.5 Pa时所占比例大小和流阻大小R。orcid.org/0000-0001-8052-5058

结果与结论:①模型中无支架部位的壁面剪应力基本一致,均在0.5-1.0 Pa,且无论是在直管-支架流场模型还是在弯管-支架流场模型中,低WSS值都分布在支架筋的侧面区域;在弯管中,支架末端多出现了大面积的低WSS区域;②在直管-支架模型中,WSS< 0.5 Pa面积占总面积的百分比为16.14%,在30°,45°,60°弯管-支架模型中,WSS< 0.5 Pa面积占总面积的百分比依次为25.21%,28.65%,26.63%,均大于直管内支架,即弯曲血管内支架再狭窄率相对较高;③所有弯管-支架模型中WSS的分布基本一致,与曲率无关;④弯管-支架模型(30°,45°,60°)流阻均大于直管-支架模型[1.50,1.82,2.17,1.03 N•s2/(kg•m)];⑤结果表明,弯曲血管内支架再狭窄率相对较高。

ORCID: 0000-0001-8052-5058(唐丹)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

关键词: 冠状动脉支架, 血流动力学, 壁面剪应力, 流阻, 生物材料

Abstract:

BACKGROUND: As shown in the hemodynamic simulation test for stent implantation, the simulated blood vessels are generally designed to be straight but not curved. In order to make the simulation results reliable, the simulation model should be very close to the actual situation.

OBJECTIVE: To study the restenosis of the curved coronary artery, and to establish a model of curved blood vessels close to the actual situation of the human body so as to explain why the restenosis rate is relatively high for the curved coronary artery after stenting in clinic.
METHODS: The three-dimensional coronary stent model was established by Creo5 modeling software. Blood flow models (curved vessel-stent flow field) of curved coronary arteries (30°, 45°, 60°) and corresponding stents were established by means of Boolean calculation through the use of Ansys18.0 finite element simulation software. At the same time, a blood flow model (straight vessel-stent flow field) of the straight coronary artery under the same stent was established for comparison. After the study on fluid simulation, the proportion of wall shear stress (WSS) < 0.5 Pa and the flow resistance are compared in the two cases.

RESULTS AND CONCLUSION: (1) The WSS of the area with on stent in the two models was basically the same between 0.5-1.0 Pa, and the low WSS values were distributed in the lateral area of the stent strut whether in the straight vessel-stent flow field model or the curved vessel-stent flow field model. What’s more, a large low WSS area appeared at the end of the stent in the curved vessel-stent flow field model. (2) The area of WSS < 0.5 Pa accounted for 16.14% of the total area in the straight-stent flow field model, while this proportion was 25.21%, 28.65%, 26.63% in the curved vessel-stents (30°, 45°, 60°), respectively, indicating the rate of restenosis in the curved vessel stents were relatively high. (3) The distribution of WSS in all curved vessel-stent models were basically the same regardless of the curvature. (4) The flow resistance of the curved vessel-stent models (30°, 45°, 60°) [1.50, 1.82, 2.17 N•s2/(kg•m)] was higher than that of the straight vessel stent model [1.03 N•s2/(kg•m)]. To conclude, the rate of restenosis in the curved vessel stent is relatively higher than that in the straight vessel stent model.

 

Key words: Hemodynamics, Coronary Vessels, Coronary Stenosis, Tissue Engineering

中图分类号: