中国组织工程研究 ›› 2018, Vol. 22 ›› Issue (9): 1357-1363.doi: 10.3969/j.issn.2095-4344.0464

• 脂肪干细胞 adipose-derived stem cells • 上一篇    下一篇

脂肪干细胞-脱钙骨的玻璃化冻存及复苏

刘 磊1,庸 奇2,李 娜1,杨 朵1,张国英1,崔 磊1   

  1. 1首都医科大学附属北京世纪坛医院,北京市 100038;2新乡医学院第三附属医院整形外科,河南省新乡市 453000
  • 修回日期:2018-02-10 出版日期:2018-03-28 发布日期:2018-03-28
  • 通讯作者: 崔磊,博士,主任医师,教授,首都医科大学附属北京世纪坛医院,北京市 100038
  • 作者简介:刘磊,男,1989年生,河南省正阳县人,汉族,首都医科大学在读硕士,主要从事组织工程骨玻璃化冻存的基础研究。
  • 基金资助:

    北京市医院管理局临床医学发展专项“杨帆计划”(XMLX2 01611)

Vitreous cryopreservation and thawing of adipose-derived stem cells/demineralized bone matri

Liu Lei1, Yong Qi2, Li Na1, Yang Duo1, Zhang Guo-ying1, Cui Lei1   

  1. 1Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; 2Department of Plastic Surgery, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan Province, China
  • Revised:2018-02-10 Online:2018-03-28 Published:2018-03-28
  • Contact: Cui Lei, M.D., Chief physician, Professor, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
  • About author:Liu Lei, Master candidate, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
  • Supported by:

    the Special Fund for the Clinical Medicine Development in Beijing Municipal Administration of Hospitals, No. XMLX2 01611

摘要:

文章快速阅读:

文题释义:
抗冷冻保护剂:
根据能否渗透到细胞内,可将其分为渗透性和非渗透性两种。渗透性保护剂多属于低分子中性物质,在溶液中易结合水分子发生水合作用,使溶液的黏性增加,从而弱化了水的结晶过程,达到保护的目的。非渗透性保护剂一般是大分子物质,能溶于水,但不能进入细胞,它使溶液呈过冷状态,即可以在特定温度下降低溶质的浓度,通过改变渗透压引起细胞脱水,从而起到保护作用。
玻璃化冻存:通过特殊的冷冻保护剂,液氮快速冷冻达到一种类似玻璃的非晶体状态。这种非晶体的玻璃化状态是由液体的极度黏稠形成,避免冰晶形成,阻止冰晶刺破细胞膜和细胞器,保证了细胞结构和功能的完整性。玻璃化冻存已经应用到组织工程组织的冻存包括组织工程骨、组织工程胰腺、组织工程软骨,是一种理想的冻存组织的方法。

 

摘要
背景:
前期研究应用玻璃化冻存脂肪干细胞-脱钙骨支架复合物1周,得到玻璃化冻存液合适的配比成分。延长玻璃化冻存时间至12周,是否仍能保持细胞活力以及成骨能力值得进一步研究。
目的:探讨短时(1周)、长时(12周)玻璃化冻存对组织工程骨中脂肪干细胞增殖活性和成骨能力的影响。
方法:分离新西兰大白兔脂肪干细胞,扩增至第3代,接种于猪松质骨来源的脱钙骨,成骨诱导1周。将构建的组织工程骨,转移至含有玻璃化冻存液(30%二甲基亚砜,70%LG-DMEM,0.8 mol/L海藻糖)的2 mL冻存管中,将冻存管投入液氮冻存。分别于冻存后1周和12周,复苏1,3,7,11,13 d,用活死双染试剂染色,共聚焦显微镜观察脂肪干细胞在脱钙骨上的生长情况。复苏1,3,5,7,9,11,13 d,用Hochest33258法检测支架材料上的细胞数目。复苏1,4,7,10,14,21 d,用PNP微板法检测碱性磷酸酶活力,Real-time PCR检测成骨基因Runx2,OCN,COL-1,ALP的表达。
结果与结论:①细胞活死双染结果显示,冻存1周或12周后,复苏1 d时红染的死细胞较冻存前红染的死细胞多,复苏3 d后绿染的活细胞逐渐增多;②Hochest33258结果表明,与冻存前的细胞数相比,冻存1周或者12周后,复苏第1,3天的细胞数目有所降低,复苏3 d后细胞数目开始持续增加,复苏第5天细胞数目恢复至冻存前水平;③复苏后1,4 d,碱性磷酸酶活力降低但是与冻存前比较差异无显著性意义,复苏4 d后碱性磷酸酶活力持续升高;④复苏后1,4 d,成骨基因Runx2,Col-1,ALP,OCN表达降低但是与冻存前相比差异无显著性意义,复苏4 d后成骨基因表达持续升高;⑤玻璃化冻存1周与12周比较,复苏后的细胞活力和成骨活性差异均无显著性意义;⑥实验初步证实,玻璃化冻存可以保持组织工程骨的细胞活力与成骨活性;冻存时间(1,12周)对复苏后组织工程骨的成骨能力没有显著影响。

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
ORCID: 0000-0002-3352-5685(刘磊)

关键词: 玻璃化冻存, 脂肪干细胞, 脱钙骨基质, 组织工程骨, 成骨活性, 细胞活力, 干细胞

Abstract:

BACKGROUND: Short-term (1 week) vitreous cryopreservation avoiding the formation of ice crystals has been achieved in preserving tissue-engineered bone composed of adipose-derived stem cells (ADSCs)/demineralized bone matrix (DBM) compound through adjusting particular composition of cryopreservation fluid. However, whether vitreous cryopreservation can be utilized to cryopreserve tissue-engineered bone for long term (12 weeks) and maintain cellular viability and osteogenic function after rewarming remains unclear.
OBJECTIVE: To investigate the effects of vitreous cryopreservation on viability and osteogenic function of ADSCs for short-term (1 week) and long-term (12 weeks) cryopreservation.
METHODS: ADSCs were isolated from New Zealand rabbits and expended to passage 3. Cells at passage 3 were seeded onto DBM derived from porcine trabecular bone and followed by 1 week osteogenic induction. The tissue-engineered bone was transferred to freezing vials of 2 mL containing vitreous cryopreservation fluid and then directly quenched into liquid nitrogen. The composition of cryopreservation fluid was 30% dimethyl sulfoxide, 70% low glucose-Dulbecco’s modified Eagle medium (L-DMEM), 0.8 mol/L trehalose. Following vitrification for 1 week or 12 weeks, the composite of ADSCs/DBM was removed and thawed. After rewarming, ADSCs viability were viewed under confocal laser microscope by staining viable cells with the green fluorescent dye Calcein AM and the red fluorescent dye Propidium iodide at days 1, 3, 7, 11 and 13. The number of cells seeded onto the DBM was assayed by Hochest33258 at days 1, 3, 5, 7, 9, 11 and 13. Meanwhile, alkaline phosphatase (ALP) activity was also assayed by PNP microplate method at days 1, 4, 7, 10, 14 and 21. Osteogenic gene expression including Runx2, OCN, ALP, COL-1 was detected by real- time PCR at days 1, 4, 7, 10, 14 and 21.
RESULTS AND CONCLUSION: After cryopreservation of 1 week or 12 weeks, it was found that more red-staining live cells was observed at 1 day post-rewarming by live/dead double staining, and the green-staining live cells increased at 3 days. By Hoechst 33258 assay, it was found that the cell number decreased at 1 and 3 days post-rewarming, compared with pre-cryopreservation. However, a constant increase in the cell number was observed beginning at 3 days, reaching the pre-cryopreservation level at 5 days post-rewarming. By PNP microplate method, it was found that ALP activity reduced at 1 and 4days post-rewarming, but compared with the level of pre-cryopreservation there were no significant difference. However, a constant increase in ALP activity was detected since 4 days. By real-time PCR, osteogenic gene expression including Runx2, OCN, ALP, COL-1 reduced at days 1 and 4, but compared with the level of pre-cryopreservation there was no significant difference. However, a constant increase in the osteogenic gene expression was since 4 days. The cell viability and osteogenic function were observed without significant difference at each time point after rewarming of cells that had undergone vitreous cryopreservation for 1 or 12 weeks. Preliminary findings indicate that vitreous cryopreservation can maintain cellular viability and osteogenic function of tissue-engineered bone. Cryopreservation time (1 and 12 weeks) has no significant effect on the cell viability and osteogenic function of the tissue-engineered bone after rewarming. 

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

Key words: Adipose Tissue, Mesenchymal Stem Cells, Decalcification Technique, Femur, Cryopreservation, Tissue Engineering

中图分类号: