中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (16): 2519-2526.doi: 10.12307/2024.302

• 组织构建实验造模 experimental modeling in tissue construction • 上一篇    下一篇

经颅磁声电刺激对健康与帕金森病大鼠神经回路中beta振荡的影响

张  帅1,2,3,由胜男1,2,3,杜文静1,2,3,王   磊1,2,3,徐桂芝1,2,3   

  1. 河北工业大学,1省部共建电工装备可靠性与智能化国家重点实验室,2河北省生物电磁与神经工程重点实验室(筹),3天津市生物电工与智能健康重点实验室,天津市  300401
  • 收稿日期:2022-12-23 接受日期:2023-04-12 出版日期:2024-06-08 发布日期:2023-07-29
  • 通讯作者: 张帅,河北工业大学,省部共建电工装备可靠性与智能化国家重点实验室, 河北省生物电磁与神经工程重点实验室(筹),天津市生物电工与智能健康重点实验室 300401
  • 作者简介:张帅,男,1978年生,河北省顺平县人,汉族,博士,教授,主要从事生物电磁技术研究。
  • 基金资助:
    国家自然科学基金资助项目(51877069),项目负责人:张帅;河北省自然科学基金资助项目(E2021202184),项目负责人:张帅

Effects of transcranial magneto-acoustical stimulation on beta oscillations in neural circuits of healthy and Parkinson’s disease rats

Zhang Shuai1, 2, 3, You Shengnan1, 2, 3, Du Wenjing1, 2, 3, Wang Lei1, 2, 3, Xu Guizhi1, 2, 3   

  1. 1State Key Laboratory of Reliability and Intelligence of Electrical Equipment, 2Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, 3Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Healthy, Hebei University of Technology, Tianjin 300401, China
  • Received:2022-12-23 Accepted:2023-04-12 Online:2024-06-08 Published:2023-07-29
  • Contact: Zhang Shuai, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Healthy, Hebei University of Technology, Tianjin 300401, China
  • About author:Zhang Shuai, PhD, Professor, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Healthy, Hebei University of Technology, Tianjin 300401, China
  • Supported by:
    National Natural Science Foundation of China, No. 51877069 (to ZS); Natural Science Foundation of Hebei Province, No. E2021202184 (to ZS)

摘要:


文题释义:

经颅磁声电刺激:是一种新型神经调控手段,利用静磁场与超声的耦合效应调节目标脑区的神经活动。该方法具备无创安全、高穿透性、高空间分辨率等诸多优势,在脑科学研究和神经调控方面具有重要科学意义和广阔发展前景。
皮质-基底神经节回路:基底神经节是皮质下神经核团的集合,大致分为输入核、输出核和固有核,其中纹状体为主要的输入核,接收来自大脑皮质的信息,根据纹状体内神经元表达多巴胺受体的不同分为直接通路和间接通路,两条通路最终共同汇集到苍白球内侧部,即基底神经节的输出核。神经信息由苍白球内侧部传递到丘脑后最终又投射回大脑皮质,形成神经调节回路,参与控制人或动物的运动和认知功能。


背景:经颅磁声电刺激是一种基于磁声耦合电效应的无创、高精度脑神经聚焦刺激方法,可调节神经节律振荡活动,从而影响大脑的运动、认知等功能。

目的:探究经颅磁声电刺激对健康与帕金森病大鼠神经回路中beta振荡的影响。
方法:①动物实验:采用随机数字表法将24只Wistar大鼠随机分为4组,每组6只:正常对照组不进行任何干预;正常刺激组大脑前额叶皮质接受经颅磁声电刺激(空间峰值脉冲平均强度为13.33 W/cm2,基波频率为0.4 MHz,基波周期数为1 000,脉冲重复频率为200 Hz);模型对照组、模型刺激组通过腹腔注射1-甲基-4-苯基-1,2,3,6-四氢吡啶建立帕金森病模型,造模成功后,模型对照组大脑前额叶皮质接受经颅磁声电假刺激,模型刺激组大脑前额叶皮质接受经颅磁声电刺激,每天刺激时长2.0 min,刺激结束停留8-10 min后,采集大鼠执行T迷宫过程中局部场电位信号并同时记录行为学正确率,对比分析各组局部场电位信号能量的时频分布情况和行为差异,当大鼠正确率连续3 d高于80%后停止刺激实验和T迷宫实验。②建模仿真实验:构建经颅磁声电刺激下皮质-基底神经节回路模型,分别改变超声发射周期(5,10,20 ms)、超声发射占空比(30%,50%,90%)和感应电流密度(20,50,100 μA/cm2),比较不同刺激参数下健康与帕金森病大鼠beta振荡的功率谱密度值。

结果与结论:①动物实验:正常对照组大鼠的空间学习能力强于模型对照组(P < 0.001),正常刺激组大鼠的空间学习能力强于正常对照组(P < 0.05),模型刺激组大鼠的空间学习能力强于模型对照组(P < 0.01);正常对照组beta振荡能量分布较为集中,正常刺激组较正常对照组beta振荡信号能量有所降低,模型对照组与模型刺激组beta振荡能量广泛分布且能量值显著高于正常对照组、正常刺激组,并且模型刺激组beta振荡信号能量明显低于模型对照组;②建模仿真实验:不加刺激时,健康大鼠beta频段功率谱密度峰值(30 dB)显著低于帕金森病大鼠(55 dB);施加经颅磁声电刺激后,两组大鼠beta频段功率谱密度值普遍降低;beta频段功率谱密度峰值与超声发射周期呈正相关、与感应电流密度呈负相关,当超声发射占空比为50%时功率谱密度峰值最低;③结果表明:经颅磁声电刺激可抑制健康与帕金森病大鼠的beta振荡,进而改善大鼠的运动功能与决策认知功能。

https://orcid.org/0000-0003-4480-533X(张帅)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 经颅磁声电刺激, 皮质-基底神经节回路, beta振荡, 帕金森病, 局部场电位, T迷宫, 神经调控

Abstract: BACKGROUND: Transcranial magneto-acoustical electrical stimulation (TMAES) is a non-invasive, high-precision neurofocused stimulation method based on magneto-acoustic coupling electrical effect, which can regulate the rhythmic oscillation of nerve activity, thereby affecting the brain’s movement, cognition and other functions.
OBJECTIVE: To explore the effect of TMAES on beta oscillations in the neural circuits of healthy rats and Parkinson’s rats.
METHODS: (1) Animal experiments: Twenty-four Wistar rats were randomly divided into four groups (n=6 per group). The rats in the normal control group received no intervention, while those in the normal stimulation group received TMAES (the average spatial peak pulse intensity: 13.33 W/cm2, fundamental frequency: 0.4 MHz, the number of fundamental wave cycles: 1000, and pulse frequency: 200 Hz). The model control group and model stimulation group were established by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. After successful modeling, the rats in the model control group received sham TMAES stimulation in the prefrontal cortex, and those in the model stimulation group received TMAES in the prefrontal cortex, and the duration of stimulation was 2.0 minutes per day. After an interval of 8-10 minutes, the local field potential signals of rats were collected during the execution of T-maze test and the correct rate of behavior was recorded at the same time to compare and analyze the time-frequency distribution of local field potential signals and behavioral differences among the groups. The stimulation experiment and T-maze test were stopped when the correct rate of rats was higher than 80% for 3 consecutive days. (2) Modeling and simulation experiments: The cortical-basal ganglion circuit model under TMAES was established, and the ultrasonic emission period (5, 10, 20 ms), ultrasonic emission duty cycle (30%, 50%, 90%) and induced current density (20, 50, 100 μA/cm2) were changed respectively to compare the power spectral density values of beta oscillations in healthy rats and Parkinson’s rats under different stimulation parameters.
RESULTS AND CONCLUSION: (1) Animal experiments: The spatial learning ability of the rats in the normal control group was stronger than that of the model control group (P < 0.001), the spatial learning ability of the rats in the normal stimulation group was stronger than that of the normal control group (P < 0.05), and the spatial learning ability of the rats in the model stimulation group was stronger than that of the model control group (P < 0.01). The distribution of beta oscillation energy in the normal control group was more concentrated, and the beta oscillation signal energy was reduced in the normal stimulation group compared with the normal control group. The beta oscillation energy was widely distributed and the energy value was significantly higher in the model control group and the model stimulation group than the normal control and normal stimulation groups. Moreover, the beta oscillation signal energy in the model stimulation group was significantly lower than that in the model control group. (2) Modeling and simulation experiments: the peak power spectral density of the beta band of healthy rats without stimulation (30 dB) was significantly lower than that of Parkinson’s rats (55 dB). The power spectral density value generally decreased after stimulation. The peak power spectral density in the beta band was positively correlated with the ultrasonic emission period and negatively correlated with the induced current density. In addition, the peak power spectral density value was the lowest when the duty cycle of ultrasonic emission was 50%. These findings indicate that TMAES suppresses beta oscillations in healthy and Parkinson's disease rats, thereby improving motor function and decision-making cognitive function in rats.

Key words: transcranial magneto-acoustical electrical stimulation, cortical-basal ganglion circuit, beta oscillation, Parkinson’s disease, local field potential, T maze, neuromodulation

中图分类号: