[1] CUI Y, ZHU T, LI A, et al. Porous Particle-Reinforced Bioactive Gelatin Scaffold for Large Segmental Bone Defect Repairing. ACS Appl Mater Interfaces. 2018;10(8): 6956-6964.
[2] BALDWIN P, LI DJ, AUSTON DA, et al. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J Orthop Trauma. 2019;33(4):203-213.
[3] LIM G, LIN GH, MONJE A, et al. Wound Healing Complications Following Guided Bone Regeneration for Ridge Augmentation: A Systematic Review and Meta-Analysis. Int J Oral Maxillofac Implants. 2018;33(1):41-50.
[4] ALTIPARMAK N, AKDENIZ SS, AKCAY EY, et al. Effect of Induced Membrane on Guided Bone Regeneration in an Experimental Calvarial Model. J Craniofac Surg. 2020;31(3):879-883.
[5] SHAHREZAEE M, SALEHI M, KESHTKARI S, et al. In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects. Nanomedicine. 2018;14(7):2061-2073.
[6] REZWAN K, CHEN QZ, BLAKER JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006; 27(18): 3413-3431.
[7] SONG JM, SHIN SH, KIM YD, et al. Comparative study of chitosan/fibroin-hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects: micro-computed tomography analysis. Int J Oral Sci. 2014;6(2): 87-93.
[8] FABBRI P, BONDIOLI F, MESSORI M, et al. Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering. J Mater Sci Mater Med. 2010;21(1):343-351.
[9] NGUYEN TH, BAO TQ, PARK I, et al. A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering. J Biomater Appl. 2013;28(4):514-528.
[10] OH SH, KIM TH, CHUN SY, et al. Enhanced guided bone regeneration by asymmetrically porous PCL/pluronic F127 membrane and ultrasound stimulation. J Biomater Sci Polym Ed. 2012;23(13):1673-1686.
[11] KIM HY, PARK JH, BYUN JH, et al. BMP-2-Immobilized Porous Matrix with Leaf-Stacked Structure as a Bioactive GBR Membrane. ACS Appl Mater Interfaces. 2018;10(36):30115-30124.
[12] DAS P, SALERNO S, REMIGY JC, et al. Double porous poly (Ɛ-caprolactone)/chitosan membrane scaffolds as niches for human mesenchymal stem cells. Colloids Surf B Biointerfaces. 2019;184:110493.
[13] YANG C, ZHAO C, WANG X, et al. Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation. Nanoscale. 2019;11(38):17699-17708.
[14] TSAI SW, YU WX, HWANG PA, et al. Fabrication and Characteristics of PCL Membranes Containing Strontium-Substituted Hydroxyapatite Nanofibers for Guided Bone Regeneration. Polymers (Basel). 2019;11(11):1761.
[15] COOMBES AG, RIZZI SC, WILLIAMSON M, et al. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials. 2004;25(2):315-325.
[16] LIU J, ZOU Q, CAI B, et al. Heparin conjugated PCL/Gel - PCL/Gel/n-HA bilayer fibrous membrane for potential regeneration of soft and hard tissues. J Biomater Sci Polym Ed. 2020;31(11):1421-1436.
[17] GROPPO MF, CARIA PH, FREIRE AR, et al. The effect of a hydroxyapatite impregnated PCL membrane in rat subcritical calvarial bone defects. Arch Oral Biol. 2017;82:209-215.
[18] ARAHIRA T, MARUTA M, MATSUYA S. Characterization and in vitro evaluation of biphasic α-tricalcium phosphate/β-tricalcium phosphate cement. Mater Sci Eng C Mater Biol Appl. 2017;74:478-484.
[19] XIE Z, YAN D, ZHOU Q, et al. The fast degradation of β-TCP ceramics facilitates healing of bone defects by the combination of BMP-2 and Teriparatide. Biomed Pharmacother. 2019;112:108578.
[20] MASOUDI RAD M, NOURI KHORASANI S, GHASEMI-MOBARAKEH L, et al. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application. Mater Sci Eng C Mater Biol Appl. 2017;80:75-87.
[21] SHIM JH, WON JY, PARK JH, et al. Effects of 3D-Printed Polycaprolactone/β-Tricalcium Phosphate Membranes on Guided Bone Regeneration. Int J Mol Sci. 2017; 18(5):899.
[22] PAE HC, KANG JH, CHA JK, et al. Bone regeneration using three-dimensional hexahedron channel structured BCP block in rabbit calvarial defects. J Biomed Mater Res B Appl Biomater. 2019;107(7):2254-2262.
[23] KIM B, VENTURA R, LEE BT. Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering. J Tissue Eng Regen Med. 2018;12(2):e1256-e1267.
[24] PADALHIN AR, THUY BA LINH N, KI MIN Y, et al. Evaluation of the cytocompatibility hemocompatibility in vivo bone tissue regenerating capability of different PCL blends. J Biomater Sci Polym Ed. 2014;25(5):487-503.
[25] KIM HW, KNOWLES JC, KIM HE. Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(epsilon-caprolactone) composite membranes. J Biomed Mater Res A. 2004;70(3):467-479.
[26] GABBAI-ARMELIN PR, SOUZA MT, KIDO HW, et al. Effect of a new bioactive fibrous glassy scaffold on bone repair. J Mater Sci Mater Med. 2015;26(5):177.
[27] ZHOU Y, HAN S, XIAO L, et al. Accelerated host angiogenesis and immune responses by ion release from mesoporous bioactive glass. J Mater Chem B. 2018;6(20):3274-3284.
[28] LEE HH, YU HS, JANG JH, et al. Bioactivity improvement of poly(epsilon-caprolactone) membrane with the addition of nanofibrous bioactive glass. Acta Biomater. 2008;4(3):622-629.
[29] TERZOPOULOU Z, BACIU D, GOUNARI E, et al. Composite Membranes of Poly(ε-caprolactone) with Bisphosphonate-Loaded Bioactive Glasses for Potential Bone Tissue Engineering Applications. Molecules. 2019;24(17):3067.
[30] ZAHID S, KHAN AS, CHAUDHRY AA, et al. Fabrication, in vitro and in vivo studies of bilayer composite membrane for periodontal guided tissue regeneration. J Biomater Appl. 2019;33(7):967-978.
[31] HAGHIGHAT A, SHAKERI S, MEHDIKHANI M, et al. Histologic, Histomorphometric, and Osteogenesis Comparative Study of a Novel Fabricated Nanocomposite Membrane Versus Cytoplast Membrane. J Oral Maxillofac Surg. 2019;77(10): 2027-2039.
[32] MOURA D, SOUZA MT, LIVERANI L, et al. Development of a bioactive glass-polymer composite for wound healing applications. Mater Sci Eng C Mater Biol Appl. 2017;76:224-232.
[33] LOGITHKUMAR R, KESHAVNARAYAN A, DHIVYA S, et al. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym. 2016;151:172-188.
[34] SARAVANAN S, LEENA RS, SELVAMURUGAN N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;93(Pt B):1354-1365.
[35] PANG Y, QIN A, LIN X, et al. Biodegradable and biocompatible high elastic chitosan scaffold is cell-friendly both in vitro and in vivo. Oncotarget. 2017;8(22):35583-35591.
[36] AGUILAR A, ZEIN N, HARMOUCH E, et al. Application of Chitosan in Bone and Dental Engineering. Molecules. 2019;24(16):3009.
[37] HE Y, WANG W, TANG X, et al. Osteogenic induction of bone marrow mesenchymal cells on electrospun polycaprolactone/chitosan nanofibrous membrane. Dent Mater J. 2017;36(3):325-332.
[38] VINATIER C, GUICHEUX J, DACULSI G, et al. Cartilage and bone tissue engineering using hydrogels. Biomed Mater Eng. 2006;16(4 Suppl):S107-113.
[39] HU Y, FENG B, ZHANG W, et al. Electrospun gelatin/PCL and collagen/PCL scaffolds for modulating responses of bone marrow endothelial progenitor cells. Exp Ther Med. 2019;17(5):3717-3726.
[40] LEE J J, YU HS, HONG SJ, et al. Nanofibrous membrane of collagen-polycaprolactone for cell growth and tissue regeneration. J Mater Sci Mater Med. 2009;20(9):1927-1935.
[41] ZHANG Y, OUYANG H, LIM CT, et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 2005; 72(1):156-165.
[42] REN K, WANG Y, SUN T, et al. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C Mater Biol Appl. 2017;78:324-332.
[43] ZHENG R, DUAN H, XUE J, et al. The influence of Gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials. 2014;35(1):152-164.
[44] 鲁手涛,沈学红,周超.可降解高分子材料在医疗器械中的应用[J].工程塑料应用,2014,42(7):109-113.
[45] MISTURA DV, MESSIAS AD, DUEK EA, et al. Development, characterization, and cellular adhesion of poly(L-lactic acid)/poly(caprolactone triol) membranes for potential application in bone tissue regeneration. Artif Organs. 2013;37(11):978-984.
[46] ZHANG ZW, XU XX, YANG CD, et al. Experimental study on the prevention of epidural scar adhesion with polycaprolactone/polylactic acid membrane. Zhonghua Wai Ke Za Zhi. 2004;42(24):1497-1500.
[47] HIEP NT, LEE B T. Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J Mater Sci Mater Med. 2010;21(6):1969-1978.
[48] DIBAN N, HAIMI S, BOLHUIS-VERSTEEG L, et al. Hollow fibers of poly(lactide-co-glycolide) and poly(ε-caprolactone) blends for vascular tissue engineering applications. Acta Biomater. 2013;9(5):6450-6458.
[49] PRADO-PRONE G, SILVA-BERMUDEZ P, BAZZAR M, et al. Antibacterial composite membranes of polycaprolactone/gelatin loaded with zinc oxide nanoparticles for guided tissue regeneration. Biomed Mater. 2020;15(3):035006.
[50] WANG G, ROOHANI-ESFAHANI SI, ZHANG W, et al. Effects of Sr-HT-Gahnite on osteogenesis and angiogenesis by adipose derived stem cells for critical-sized calvarial defect repair. Sci Rep. 2017;7:41135.
[51] KARGOZAR S, MONTAZERIAN M, HAMZEHLOU S, et al. Mesoporous bioactive glasses: Promising platforms for antibacterial strategies. Acta Biomater. 2018;81:1-19.
[52] WANG Z, LIU Q, LIU C, et al. Mg(2+) in β-TCP/Mg-Zn composite enhances the differentiation of human bone marrow stromal cells into osteoblasts through MAPK-regulated Runx2/Osx. J Cell Physiol. 2020;235(6):5182-5191.
[53] DANG W, MA B, LI B, et al. 3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction. Biofabrication. 2020;12(2):025005.
[54] AMNA T, HASSAN MS, SHEIKH FA, et al. Zinc oxide-doped poly(urethane) spider web nanofibrous scaffold via one-step electrospinning: a novel matrix for tissue engineering. Appl Microbiol Biotechnol. 2013;97(4):1725-1734.
[55] SHALUMON KT, ANULEKHA KH, NAIR SV, et al. Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol. 2011;49(3):247-254.
[56] MüNCHOW EA, ALBUQUERQUE MT, ZERO B, et al. Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration. Dent Mater. 2015;31(9):1038-1051.
[57] YE H, ZHU J, DENG D, et al. Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration. J Biomater Sci Polym Ed. 2019;30(16):1505-1522.
[58] CASTRO AGB, DIBA M, KERSTEN M, et al. Development of a PCL-silica nanoparticles composite membrane for Guided Bone Regeneration. Mater Sci Eng C Mater Biol Appl. 2018;85:154-161.
[59] MAATOUK DM, CHOI KS, BOULDIN CM, et al. In the limb AER Bmp2 and Bmp4 are required for dorsal-ventral patterning and interdigital cell death but not limb outgrowth. Dev Biol. 2009;327(2):516-523.
[60] ROGERS KW, MüLLER P. Nodal and BMP dispersal during early zebrafish development. Dev Biol. 2019;447(1):14-23.
[61] CHEN G, DENG C, LI YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272-288.
[62] MIKAI A, ONO M, TOSA I, et al. BMP-2/β-TCP Local Delivery for Bone Regeneration in MRONJ-Like Mouse Model. Int J Mol Sci. 2020;21(19):7028.
[63] NGUYEN TH, LEE BT. In vitro and in vivo studies of rhBMP2-coated PS/PCL fibrous scaffolds for bone regeneration. J Biomed Mater Res A. 2013;101(3):797-808.
[64] STUTZ C, STRUB M, CLAUSS F, et al. A New Polycaprolactone-Based Biomembrane Functionalized with BMP-2 and Stem Cells Improves Maxillary Bone Regeneration. Nanomaterials (Basel). 2020;10(9):1774.
[65] GRAB AL, SECKINGER A, HORN P, et al. Hyaluronan hydrogels delivering BMP-6 for local targeting of malignant plasma cells and osteogenic differentiation of mesenchymal stromal cells. Acta Biomater. 2019;96:258-270.
[66] VUKICEVIC S, GRGUREVIC L. BMP-6 and mesenchymal stem cell differentiation. Cytokine Growth Factor Rev. 2009;20(5-6):441-448.
[67] GüMüŞDERELIOĞLU M, SUNAL E, TOLGA DEMIRTAŞ T, et al. Chitosan-based double-faced barrier membrane coated with functional nanostructures and loaded with BMP-6. J Mater Sci Mater Med. 2019;31(1):4.
[68] MIN HK, OH SH, LEE JM, et al. Porous membrane with reverse gradients of PDGF-BB and BMP-2 for tendon-to-bone repair: in vitro evaluation on adipose-derived stem cell differentiation. Acta Biomater. 2014;10(3):1272-1279.
[69] LEE JH, LEE YJ, CHO HJ, et al. The incorporation of bFGF mediated by heparin into PCL/gelatin composite fiber meshes for guided bone regeneration. Drug Deliv Transl Res. 2015;5(2):146-159.
[70] KO CY, KU KL, YANG SR, et al. In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG-PCL hydrogels enhances cartilage formation. J Tissue Eng Regen Med. 2016;10(10):E485-E496.
[71] FU Y, GUAN J, GUO S, et al. Human urine-derived stem cells in combination with polycaprolactone/gelatin nanofibrous membranes enhance wound healing by promoting angiogenesis. J Transl Med. 2014;12:274.
[72] WATSON EC, ADAMS RH. Biology of Bone: The Vasculature of the Skeletal System. Cold Spring Harb Perspect Med. 2018;8(7):a031559.
[73] SARKO DK, MCKINNEY CE. Exosomes: Origins and Therapeutic Potential for Neurodegenerative Disease. Front Neurosci. 2017;11:82.
[74] WORTZEL I, DROR S, KENIFIC CM, et al. Exosome-Mediated Metastasis: Communication from a Distance. Dev Cell. 2019;49(3):347-360.
[75] QIN Y, SUN R, WU C, et al. Exosome: A Novel Approach to Stimulate Bone Regeneration through Regulation of Osteogenesis and Angiogenesis. Int J Mol Sci. 2016;17(5):712.
[76] ZHANG J, LIU X, LI H, et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther. 2016;7(1):136.
[77] WANG X, AO J, LU H, et al. Osteoimmune Modulation and Guided Osteogenesis Promoted by Barrier Membranes Incorporated with S-Nitrosoglutathione (GSNO) and Mesenchymal Stem Cell-Derived Exosomes. Int J Nanomedicine. 2020;15: 3483-3496.
[78] ALDEMIR DIKICI B, REILLY GC, CLAEYSSENS F. Boosting the Osteogenic and Angiogenic Performance of Multiscale Porous Polycaprolactone Scaffolds by In Vitro Generated Extracellular Matrix Decoration. ACS Appl Mater Interfaces. 2020;12(11):12510-12524. |