中国组织工程研究 ›› 2022, Vol. 26 ›› Issue (7): 1130-1136.doi: 10.12307/2022.156
• 干细胞综述 stem cell review • 上一篇 下一篇
安维政,何 萧,任 帅,刘建宇
收稿日期:
2020-12-23
修回日期:
2020-12-25
接受日期:
2021-02-22
出版日期:
2022-03-08
发布日期:
2021-10-29
通讯作者:
刘建宇,博士,主任医师,教授,哈尔滨医科大学附属第二医院骨一科,黑龙江省哈尔滨市 150000
作者简介:
安维政,男,1991年生,黑龙江省哈尔滨市人,汉族,在读硕士,主要从事组织工程方面的研究。
基金资助:
An Weizheng, He Xiao, Ren Shuai, Liu Jianyu
Received:
2020-12-23
Revised:
2020-12-25
Accepted:
2021-02-22
Online:
2022-03-08
Published:
2021-10-29
Contact:
Liu Jianyu, MD, Chief physician, Professor, First Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
About author:
An Weizheng, Master candidate, First Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
Supported by:
摘要:
文题释义:
周围神经损伤:周围神经是指中枢神经(脑和脊髓)以外的神经。它包括12对脑神经、31对脊神经和自主神经(交感神经、副交感神经)。周围神经损伤主要是由于各种原因引起受该神经支配的区域出现感觉障碍、运动障碍。
组织工程:将细胞生物学和材料科学相结合,进行体外或体内构建组织或器官的新兴学科。从机体获取少量的活体组织在体外进行培养扩增,将扩增的细胞与具有生物相容性、可降解性生物材料(支架)按一定的比例混合,使细胞黏附在生物材料上;将该复合物植入机体的组织或器官病损部位,随着生物材料在体内逐渐被降解和吸收,植入的细胞在体内不断增殖并分泌细胞外基质,最终形成相应的组织或器官,从而达到修复创伤和重建功能的目的。
背景:肌源性干细胞具有强大的自我更新和多向分化潜能,在神经损伤修复领域具有广泛应用前景。
目的:文章就周围神经损伤的治疗现状和肌源干细胞治疗周围神经损伤的研究进展进行综述。
方法:以“肌源干细胞,周围神经损伤,组织工程,许旺细胞,移植,再生,神经导管”或“muscle-derived stem cell,peripheral nerve injury,tissue engineering,Schwann cells,transplant,regeneration,nerve conduit”为检索词,检索PubMed、CNKI、万方数据库,排除重复性研究以及内容不相关的文献,最后纳入100篇文献进行综述。
结果与结论:肌源干细胞通过分化为神经再生所需要的各种支持细胞和强大的旁分泌作用,在修复神经损伤等方面表现出良好的再生潜力。
https://orcid.org/0000-0003-4653-385X(安维政)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
安维政, 何 萧, 任 帅, 刘建宇. 肌源干细胞在周围神经再生中的潜力[J]. 中国组织工程研究, 2022, 26(7): 1130-1136.
An Weizheng, He Xiao, Ren Shuai, Liu Jianyu. Potential of muscle-derived stem cells in peripheral nerve regeneration[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1130-1136.
[1] ZHANG X, QU W, LI D, et al. Functional Polymer‐Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration. Advanced Materials Interfaces. 2020;7(14):2000225. [2] RELAIX F, BENCZE M, BOROK MJ, et al. Perspectives on skeletal muscle stem cells. Nat Commun. 2021;12(1):692. [3] SCHMIDT CE, LEACH JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293-347. [4] PINHO AC, FONSECA AC, SERRA AC, et al. Peripheral Nerve Regeneration: Current Status and New Strategies Using Polymeric Materials. Adv Healthc Mater. 2016;5(21):2732-2744. [5] PETCU EB, MIDHA R, MCCOLL E, et al. 3D printing strategies for peripheral nerve regeneration. Biofabrication. 2018;10(3):032001. [6] TOS P, PIANA R, BOUX E, et al. Index Finger Pollicization for Functional Preservation of the Hand After Giant Liposarcoma Resection of the Thenar Eminence. J Hand Microsurg. 2015;7(1):216-219. [7] FARONI A, MOBASSERI SA, KINGHAM PJ, et al. Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev. 2015;82-83:160-167. [8] MARTÍNEZ DE ALBORNOZ P, DELGADO PJ, Forriol F, et al. Non-surgical therapies for peripheral nerve injury. Br Med Bull. 2011;100:73-100. [9] HAASTERT-TALINI K, SCHMITTE R, KORTE N, et al. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps. J Neurotrauma. 2011;28(4):661-674. [10] BANNAGA A, GUO T, OUYANG X, et al. Magnetic stimulation accelerating rehabilitation of peripheral nerve injury. J Huazhong Univ Sci Technolog Med Sci. 2002;22(2):135-139. [11] BUCHAIM DV, ANDREO JC, FERREIRA JUNIOR RS, et al. Efficacy of Laser Photobiomodulation on Morphological and Functional Repair of the Facial Nerve. Photomed Laser Surg. 2017;35(8):442-449. [12] JOUNG I, YOO M, WOO JH, et al. Secretion of EGF-like domain of heregulinβ promotes axonal growth and functional recovery of injured sciatic nerve. Mol Cells. 2010;30(5):477-484. [13] SHARMA N, MARZO SJ, JONES KJ, et al. Electrical stimulation and testosterone differentially enhance expression of regeneration-associated genes. Exp Neurol. 2010;223(1):183-191. [14] LI R, LIU Z, PAN Y, et al. Peripheral nerve injuries treatment: a systematic review. Cell Biochem Biophys. 2014;68(3):449-454. [15] JOHNSON EO, SOUCACOS PN. Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides. Injury. 2008;39 Suppl 3:S30-36. [16] MIDHA R. Emerging techniques for nerve repair: nerve transfers and nerve guidance tubes. Clin Neurosurg. 2006;53:185-190. [17] RAY WZ, MACKINNON SE. Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol. 2010;223(1):77-85. [18] NORKUS T, NORKUS M, RAMANAUSKAS T. Donor, recipient and nerve grafts in brachial plexus reconstruction: anatomical and technical features for facilitating the exposure. Surg Radiol Anat. 2005;27(6): 524-530. [19] GRINSELL D, KEATING CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int. 2014; 2014:698256. [20] PARK S, KOPPES RA, FRORIEP UP, et al. Optogenetic control of nerve growth. Sci Rep. 2015;5:9669. [21] DEISSEROTH K, FENG G, MAJEWSKA AK, et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci. 2006;26(41):10380-10386. [22] DEISSEROTH K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015;18(9):1213-1225. [23] WARD PJ, JONES LN, MULLIGAN A, et al. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo. PLoS One. 2016;11(5):e0154243. [24] KARACAOGLU E, YÜKSEL F, PEKER F, et al. Nerve regeneration through an epineurial sheath: its functional aspect compared with nerve and vein grafts. Microsurgery. 2001;21(5):196-201. [25] XU Z, CHEN Z, FENG W, et al. Grafted muscle-derived stem cells promote the therapeutic efficiency of epimysium conduits in mice with peripheral nerve gap injury. Artif Organs. 2020;44(5):E214-E225. [26] RINKER B, VYAS KS. Clinical applications of autografts, conduits, and allografts in repair of nerve defects in the hand: current guidelines. Clin Plast Surg. 2014;41(3):533-550. [27] HOUSCHYAR KS, MOMENI A, PYLES MN, et al. The Role of Current Techniques and Concepts in Peripheral Nerve Repair. Plast Surg Int. 2016;2016:4175293. [28] VIJAYAVENKATARAMAN S, ZHANG S, THAHARAH S, et al. Electrohydrodynamic Jet 3D Printed Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Polymers (Basel). 2018;10(7):753. [29] WU X, WANG S, CHEN B, et al. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res. 2010;340(3):549-567. [30] LONG X, OLSZEWSKI M, HUANG W, et al. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells. Stem Cells Dev. 2005;14(1):65-69. [31] SYPECKA J, ZIEMKA-NALECZ M, DRAGUN-SZYMCZAK P, et al. A simple, xeno-free method for oligodendrocyte generation from human neural stem cells derived from umbilical cord: engagement of gelatinases in cell commitment and differentiation. J Tissue Eng Regen Med. 2017; 11(5):1442-1455. [32] KRAUSE MP, DWORSKI S, FEINBERG K, et al. Direct genesis of functional rodent and human schwann cells from skin mesenchymal precursors. Stem Cell Reports. 2014;3(1):85-100. [33] YAMAZAKI A, YASHIRO M, MII S, et al. Isoproterenol directs hair follicle-associated pluripotent (HAP) stem cells to differentiate in vitro to cardiac muscle cells which can be induced to form beating heart-muscle tissue sheets. Cell Cycle. 2016;15(5):760-765. [34] SUN F, ZHOU K, MI WJ, et al. Combined use of decellularized allogeneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats. Biomaterials. 2011;32(32):8118-8128. [35] ERBA P, MANTOVANI C, KALBERMATTEN DF, et al. Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. J Plast Reconstr Aesthet Surg. 2010;63(12):e811-817. [36] HUANG JI, KAZMI N, DURBHAKULA MM, et al. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res. 2005;23(6): 1383-1389. [37] PARKER MA, ANDERSON JK, CORLISS DA, et al. Expression profile of an operationally-defined neural stem cell clone. Exp Neurol. 2005; 194(2):320-332. [38] BELKIND-GERSON J, HOTTA R, WHALEN M, et al. Engraftment of enteric neural progenitor cells into the injured adult brain. BMC Neurosci. 2016;17:5. [39] SUN D, GUGLIOTTA M, ROLFE A, et al. Sustained survival and maturation of adult neural stem/progenitor cells after transplantation into the injured brain. J Neurotrauma. 2011;28(6):961-972. [40] COSTAMAGNA D, BERARDI E, CECCARELLI G, et al. Adult Stem Cells and Skeletal Muscle Regeneration. Curr Gene Ther. 2015;15(4):348-363. [41] TAMAKI T, OKADA Y, UCHIYAMA Y, et al. Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage. Stem Cells. 2007;25(9):2283-2290. [42] 姚致雅.肛门直肠畸形大鼠盆底肌发育异常的分子机制及其宫内移植干细胞修复作用的研究[D].沈阳:中国医科大学,2020. [43] JANKOWSKI RJ, DEASY BM, HUARD J. Muscle-derived stem cells. Gene Ther. 2002;9(10):642-647. [44] CEUSTERS J, LEJEUNE JP, SANDERSEN C, et al. From skeletal muscle to stem cells: an innovative and minimally-invasive process for multiple species. Sci Rep. 2017;7(1):696. [45] URISH KL, VELLA JB, OKADA M, et al. Antioxidant levels represent a major determinant in the regenerative capacity of muscle stem cells. Mol Biol Cell. 2009;20(1):509-520. [46] VELLA JB, THOMPSON SD, BUCSEK MJ, et al. Murine and human myogenic cells identified by elevated aldehyde dehydrogenase activity: implications for muscle regeneration and repair. PLoS One. 2011;6(12): e29226. [47] DEASY BM, GHARAIBEH BM, POLLETT JB, et al. Long-term self-renewal of postnatal muscle-derived stem cells. Mol Biol Cell. 2005;16(7): 3323-3333. [48] NEEF K, TRESKES P, XU G, et al. Dynamic Support Culture of Murine Skeletal Muscle-Derived Stem Cells Improves Their Cardiogenic Potential In Vitro. Stem Cells Int. 2015;2015:247091. [49] AGUIARI P, LEO S, ZAVAN B, et al. High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci U S A. 2008;105(4):1226-1231. [50] KIM KS, LEE JH, AHN HH, et al. The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds. Biomaterials. 2008;29(33):4420-4428. [51] LI H, JOHNSON NR, USAS A, et al. Sustained release of bone morphogenetic protein 2 via coacervate improves the osteogenic potential of muscle-derived stem cells. Stem Cells Transl Med. 2013; 2(9):667-677. [52] PARK HS, HAHN S, CHOI GH, et al. Muscle-derived stem cells promote angiogenesis and attenuate intimal hyperplasia in different murine vascular disease models. Stem Cells Dev. 2013;22(6):866-877. [53] BELLAYR IH, GHARAIBEH B, HUARD J, et al. Skeletal muscle-derived stem cells differentiate into hepatocyte-like cells and aid in liver regeneration. Int J Clin Exp Pathol. 2010;3(7):681-690. [54] FARACE F, PRESTOZ L, BADAOUI S, et al. Evaluation of hematopoietic potential generated by transplantation of muscle-derived stem cells in mice. Stem Cells Dev. 2004;13(1):83-92. [55] TANG Y, HE H, CHENG N, et al. PDGF, NT-3 and IGF-2 in combination induced transdifferentiation of muscle-derived stem cells into Schwann cell-like cells. PLoS One. 2014;9(1):e73402. [56] KIM ES, KIM GH, KANG ML, et al. Potential induction of rat muscle-derived stem cells to neural-like cells by retinoic acid. J Tissue Eng Regen Med. 2011;5(5):410-414. [57] KWON JS, KIM GH, KIM DY, et al. Chitosan-based hydrogels to induce neuronal differentiation of rat muscle-derived stem cells. Int J Biol Macromol. 2012;51(5):974-979. [58] VOJNITS K, PAN H, MU X, et al. Characterization of an Injury Induced Population of Muscle-Derived Stem Cell-Like Cells. Sci Rep. 2015;5: 17355. [59] KIM HS, LEE BN, CHOI S, et al. Behavior of Muscle-Derived Stem Cells on Silica Nanostructured Substrates. Nanomaterials (Basel). 2020;10(9):1651. [60] TAMAKI T, UCHIYAMA Y, HIRATA M, et al. Therapeutic isolation and expansion of human skeletal muscle-derived stem cells for the use of muscle-nerve-blood vessel reconstitution. Front Physiol. 2015;6:165. [61] GHARAIBEH B, LU A, TEBBETS J, et al. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc. 2008;3(9):1501-1509. [62] 刘志强,李妍,杨小娟,等.小鼠肌源性干细胞在3种不同培养基中的增殖特征[J].基础医学与临床,2019,39(12):1669-1674. [63] ROMERO-RAMOS M, VOURC’H P, YOUNG HE, et al. Neuronal differentiation of stem cells isolated from adult muscle. J Neurosci Res. 2002;69(6):894-907. [64] TAMAKI T, UCHIYAMA Y, OKADA Y, et al. Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells. Circulation. 2005; 112(18):2857-2866. [65] PARK JS, KIM S, HAN DK, et al. Isolation of neural precursor cells from skeletal muscle tissues and their differentiation into neuron-like cells. Exp Mol Med. 2007;39(4):483-490. [66] XU Z, YU L, LU H, et al. A modified preplate technique for efficient isolation and proliferation of mice muscle-derived stem cells. Cytotechnology. 2018;70(6):1671-1683. [67] SEALE P, SABOURIN LA, GIRGIS-GABARDO A, et al. Pax7 is required for the specification of myogenic satellite cells. Cell. 2000;102(6):777-786. [68] COTTLE BJ, LEWIS FC, SHONE V, et al. Skeletal muscle-derived interstitial progenitor cells (PICs) display stem cell properties, being clonogenic, self-renewing, and multi-potent in vitro and in vivo. Stem Cell Res Ther. 2017;8(1):158. [69] LEE JY, QU-PETERSEN Z, CAO B, et al. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol. 2000;150(5):1085-1100. [70] TAMAKI T, HIRATA M, NAKAJIMA N, et al. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery. PLoS One. 2016;11(11):e0166639. [71] ALESSANDRI G, PAGANO S, BEZ A, et al. Isolation and culture of human muscle-derived stem cells able to differentiate into myogenic and neurogenic cell lineages. Lancet. 2004;364(9448):1872-1883. [72] LADAK A, OLSON J, TREDGET EE, et al. Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Exp Neurol. 2011;228(2):242-252. [73] TERENGHI G. Peripheral nerve regeneration and neurotrophic factors. J Anat. 1999;194(Pt 1):1-14. [74] RODRÍGUEZ FJ, VERDÚ E, CEBALLOS D, et al. Nerve guides seeded with autologous schwann cells improve nerve regeneration. Exp Neurol. 2000;161(2):571-584. [75] LAVASANI M, THOMPSON SD, POLLETT JB, et al. Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration. J Clin Invest. 2014;124(4):1745-1756. [76] YANG J, WANG X, WANG Y, et al. Dopaminergic neuronal conversion from adult rat skeletal muscle-derived stem cells in vitro. Neurochem Res. 2012;37(9):1982-1992. [77] ZENG X, ZHANG L, SUN L, et al. Recovery from rat sciatic nerve injury in vivo through the use of differentiated MDSCs in vitro. Exp Ther Med. 2013;5(1):193-196. [78] KONDO T, CASE J, SROUR EF, et al. Skeletal muscle-derived progenitor cells exhibit neural competence. Neuroreport. 2006;17(1):1-4. [79] VOURC’H P, ROMERO-RAMOS M, CHIVATAKARN O, et al. Isolation and characterization of cells with neurogenic potential from adult skeletal muscle. Biochem Biophys Res Commun. 2004;317(3):893-901. [80] QU-PETERSEN Z, DEASY B, JANKOWSKI R, et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol. 2002;157(5):851-864. [81] LAVASANI M, LU A, PENG H, et al. Nerve growth factor improves the muscle regeneration capacity of muscle stem cells in dystrophic muscle. Hum Gene Ther. 2006;17(2):180-192. [82] TAMAKI T, HIRATA M, SOEDA S, et al. Preferential and comprehensive reconstitution of severely damaged sciatic nerve using murine skeletal muscle-derived multipotent stem cells. PLoS One. 2014;9(3):e91257. [83] LAVASANI M, ROBINSON AR, LU A, et al. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nat Commun. 2012;3:608. [84] RADFAR AJ, ROBBINS PD, HUARD J, et al. Transplantation of virally transduced cells into the dermis of immunocompetent and immunodeficient (SCID) mice to determine gene expression profile and differential donor cell survival. Wound Repair Regen. 2000;8(6):503-510. [85] LAVASANI M, POLLETT JB, USAS A, et al. The microenvironment-specific transformation of adult stem cells models malignant triton tumors. PLoS One. 2013;8(12):e82173. [86] HUANG CW, HUANG WC, QIU X, et al. The Differentiation Stage of Transplanted Stem Cells Modulates Nerve Regeneration. Sci Rep. 2017; 7(1):17401. [87] GEORGIOU M, GOLDING JP, LOUGHLIN AJ, et al. Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials. 2015;37:242-251. [88] COSTA HJ, BENTO RF, SALOMONE R, et al. Mesenchymal bone marrow stem cells within polyglycolic acid tube observed in vivo after six weeks enhance facial nerve regeneration. Brain Res. 2013;1510:10-21. [89] CUI Q. Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol. 2006;33(2): 155-179. [90] SUN XH, CHE YQ, TONG XJ, et al. Improving nerve regeneration of acellular nerve allografts seeded with SCs bridging the sciatic nerve defects of rat. Cell Mol Neurobiol. 2009;29(3):347-353. [91] SAITO K, TAMAKI T, HIRATA M, et al. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation. PLoS One. 2015;10(9):e0138371. [92] TAMAKI T, SOEDA S, HASHIMOTO H, et al. 3D reconstitution of nerve-blood vessel networks using skeletal muscle-derived multipotent stem cell sheet pellets. Regen Med. 2013;8(4):437-451. [93] KAZUNO A, MAKI D, YAMATO I, et al. Regeneration of Transected Recurrent Laryngeal Nerve Using Hybrid-Transplantation of Skeletal Muscle-Derived Stem Cells and Bioabsorbable Scaffold. J Clin Med. 2018;7(9):276. [94] SETA H, MAKI D, KAZUNO A, et al. Voluntary Exercise Positively Affects the Recovery of Long-Nerve Gap Injury Following Tube-Bridging with Human Skeletal Muscle-Derived Stem Cell Transplantation. J Clin Med. 2018;7(4):67. [95] DALY W, YAO L, ZEUGOLIS D, et al. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface. 2012;9(67):202-221. [96] KADOYA K, LU P, NGUYEN K, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med. 2016;22(5):479-487. [97] JOHNSON BN, LANCASTER KZ, ZHEN G, et al. 3D Printed Anatomical Nerve Regeneration Pathways. Adv Funct Mater. 2015;25(39):6205-6217. [98] LADD C, SO JH, MUTH J, et al. 3D printing of free standing liquid metal microstructures. Adv Mater. 2013;25(36):5081-5085. [99] JOHNSON BN, LANCASTER KZ, HOGUE IB, et al. 3D printed nervous system on a chip. Lab Chip. 2016;16(8):1393-1400. [100] JOUNG D, LAVOIE NS, GUO SZ, et al. 3D Printed Neural Regeneration Devices. Adv Funct Mater. 2020;30(1):10. |
[1] | 项鑫健, 柳 芳, 吴亮亮, 贾大平, 陶 越, 赵政男, 赵 宇. 高剂量维生素C促进大鼠自体脂肪移植成活[J]. 中国组织工程研究, 2022, 26(8): 1298-1302. |
[2] | 王 景, 熊 山, 曹 金, 冯林伟, 王 信. 白细胞介素3在骨代谢中的作用及机制[J]. 中国组织工程研究, 2022, 26(8): 1316-1322. |
[3] | 朱 婵, 韩栩珂, 姚承佼, 张 强, 刘 静, 邵 明. 针刺治疗帕金森病:动物实验显示的作用机制[J]. 中国组织工程研究, 2022, 26(8): 1330-1335. |
[4] | 范一鸣, 刘方煜, 张洪宇, 李 帅, 王岩松. 脊髓损伤后室管膜区内源性神经干细胞反应的系列问题[J]. 中国组织工程研究, 2022, 26(7): 1137-1142. |
[5] | 轩娟娟, 白鸿太, 张继翔, 王耀权, 陈国勇, 魏思东. 调节性T细胞亚群在肝移植中的作用及临床应用进展[J]. 中国组织工程研究, 2022, 26(7): 1143-1148. |
[6] | 田 川, 朱向情, 杨再玲, 鄢东海, 李 晔, 王严影, 杨育坤, 何 洁, 吕冠柯, 蔡学敏, 舒丽萍, 何志旭, 潘兴华. 骨髓间充质干细胞调控猕猴卵巢的衰老[J]. 中国组织工程研究, 2022, 26(7): 985-991. |
[7] | 高俞锦, 彭双麟, 马治超, 陆 诗, 曹花月, 王 浪, 肖金刚. 糖尿病骨质疏松症模型小鼠脂肪干细胞的成骨能力[J]. 中国组织工程研究, 2022, 26(7): 999-1004. |
[8] | 周 颖, 张 幻, 廖 松, 胡凡琦, 易 静, 刘玉斌, 靳继德. 去铁胺联合干扰素γ预处理对人牙髓干细胞的免疫调节作用[J]. 中国组织工程研究, 2022, 26(7): 1012-1019. |
[9] | 梁学振, 杨 曦, 李嘉程, 骆 帝, 许 波, 李 刚. 补肾活血胶囊介导Hedgehog信号通路调控大鼠骨髓间充质干细胞成骨成脂分化[J]. 中国组织工程研究, 2022, 26(7): 1020-1026. |
[10] | 刘 峰, 彭宇环, 罗良平, 吴本清. 植物源性碱性成纤维细胞生长因子维持人胚胎干细胞的生长与分化[J]. 中国组织工程研究, 2022, 26(7): 1032-1037. |
[11] | 房晓磊, 冷 军, 张 晨, 刘会敏, 郭 文. 间充质干细胞不同移植途径治疗缺血性脑卒中疗效差异的系统评价[J]. 中国组织工程研究, 2022, 26(7): 1085-1092. |
[12] | 郭 嘉, 丁琼桦, 刘 泽, 吕思懿, 周泉程, 高玉花, 白春雨. 间充质干细胞来源外泌体的生物学特性及免疫调控作用[J]. 中国组织工程研究, 2022, 26(7): 1093-1101. |
[13] | 吴玮玥, 郭晓东, 包崇云. 工程化外泌体在骨修复再生中的应用[J]. 中国组织工程研究, 2022, 26(7): 1102-1106. |
[14] | 周洪琴, 吴丹丹, 杨 琨, 刘 琪. 传递特定miRNA的外泌体可调控成骨并促进成血管[J]. 中国组织工程研究, 2022, 26(7): 1107-1112. |
[15] | 张璟琳, 冷 敏, 朱博恒, 汪 虹. 干细胞源外泌体促进糖尿病创面愈合的机制及应用[J]. 中国组织工程研究, 2022, 26(7): 1113-1118. |
文题释义:#br# 周围神经损伤:周围神经是指中枢神经(脑和脊髓)以外的神经。它包括12对脑神经、31对脊神经和自主神经(交感神经、副交感神经)。周围神经损伤主要是由于各种原因引起受该神经支配的区域出现感觉障碍、运动障碍。#br# 组织工程:将细胞生物学和材料科学相结合,进行体外或体内构建组织或器官的新兴学科。从机体获取少量的活体组织在体外进行培养扩增,将扩增的细胞与具有生物相容性、可降解性生物材料(支架)按一定的比例混合,使细胞黏附在生物材料上;将该复合物植入机体的组织或器官病损部位,随着生物材料在体内逐渐被降解和吸收,植入的细胞在体内不断增殖并分泌细胞外基质,最终形成相应的组织或器官,从而达到修复创伤和重建功能的目的。#br# 中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
#br#现有的研究着重强调了肌源干细胞旁分泌作用在神经再生中的作用。近年来发现外泌体是细胞间交流的重要媒介,针对肌源干细胞外泌体的研究会更深入了解肌源干细胞治疗的机制以及更充分发挥肌源干细胞的潜力。由于体内细胞所经历的是3D生理环境,常规体外培养的肌源干细胞不能充分模拟生物体内肌源干细胞的行为。因此,目前的实验结果并不能完全充分反映肌源干细胞的治疗潜力,3D细胞培养能更真实的模拟细胞在体内的生理环境,组织培养技术的最新进展使得3D细胞培养方法成为可能。人类神经器官(器官移植物)也可以被打印并移植到动物模型,整合到内源性组织中并被血管化。因此,创造具有功能性血管系统的3D生物打印类器官移植物,更恰当地模拟复杂的神经网络,将具有重要意义。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||