[1] GLADSTONE M. A review of the incidence and prevalence, types and aetiology of childhood cerebral palsy in resource-poor settings. Ann Trop Paediatr. 2010;30(3):181-196.
[2] GRAHAM HK, ROSENBAUM P, PANETH N, et al. Cerebral palsy. Nat Rev Dis Primers. 2016;2:15082.
[3] MACLENNAN AH, THOMPSON SC, GECZ J. Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol. 2015;213(6):779-788.
[4] BANGASH AS, HANAFI MZ, IDREES R, et al. Risk factors and types of cerebral palsy. J Pak Med Assoc. 2014;64(1):103-107.
[5] ERKIN G, DELIALIOGLU SU, OZEL S, et al. Risk factors and clinical profiles in Turkish children with cerebral palsy: analysis of 625 cases. Int J Rehabil Res. 2008;31(1):89-91.
[6] TAKEUCHI H, INAGAKI S, MOROZUMI W, et al. VGF nerve growth factor inducible is involved in retinal ganglion cells death induced by optic nerve crush. Sci Rep. 2018;8(1):16443.
[7] NOVAK I, MORGAN C, ADDE L, et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatr. 2017;171(9):897-907.
[8] THÉRY C, AMIGORENA S, RAPOSO G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Chapter 3:Unit 3.22.
[9] SKOG J, WÜRDINGER T, VAN RIJN S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470-1476.
[10] URBANELLI L, BURATTA S, SAGINI K, et al. Exosome-based strategies for Diagnosis and Therapy. Recent Pat CNS Drug Discov. 2015;10(1):10-27.
[11] CHIASSERINI D, VAN WEERING JR, PIERSMA SR, et al. Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset. J Proteomics. 2014;106:191-204.
[12] YAGI Y, OHKUBO T, KAWAJI H, et al. Next-generation sequencing-based small RNA profiling of cerebrospinal fluid exosomes. Neurosci Lett. 2017;636:48-57.
[13] MANEK R, MOGHIEB A, YANG Z, et al. Protein Biomarkers and Neuroproteomics Characterization of Microvesicles/Exosomes from Human Cerebrospinal Fluid Following Traumatic Brain Injury. Mol Neurobiol. 2018; 55(7):6112-6128.
[14] MEHDIANI A, MAIER A, PINTO A, et al. An innovative method for exosome quantification and size measurement. J Vis Exp. 2015;(95):50974.
[15] PATHAN M, KEERTHIKUMAR S, CHISANGA D, et al. A novel community driven software for functional enrichment analysis of extracellular vesicles data. J Extracell Vesicles. 2017;6(1):1321455.
[16] DAVIS AP, GRONDIN CJ, JOHNSON RJ, et al. Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res. 2021;49(D1):D1138-D1143.
[17] PLETSCHER-FRANKILD S, PALLEJÀ A, TSAFOU K, et al. DISEASES: text mining and data integration of disease-gene associations. Methods. 2015;74:83-89.
[18] GROTE S, PRÜFER K, KELSO J, et al. ABAEnrichment: an R package to test for gene set expression enrichment in the adult and developing human brain. Bioinformatics. 2016;32(20):3201-3203.
[19] KEERTHIKUMAR S, CHISANGA D, ARIYARATNE D, et al. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J Mol Biol. 2016;428(4):688-692.
[20] KALRA H, SIMPSON RJ, JI H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10(12):e1001450.
[21] THOMPSON AG, GRAY E, MAGER I, et al. UFLC-Derived CSF Extracellular Vesicle Origin and Proteome. Proteomics. 2018;18(24):e1800257.
[22] MURAOKA S, LIN W, CHEN M, et al. Assessment of separation methods for extracellular vesicles from human and mouse brain tissues and human cerebrospinal fluids. Methods. 2020;177:35-49.
[23] STREET JM, BARRAN PE, MACKAY CL, et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med. 2012;10:5.
[24] BAIETTI MF, ZHANG Z, MORTIER E, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677-685.
[25] THÉRY C, OSTROWSKI M, SEGURA E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581-593.
[26] FILIPE V, HAWE A, JISKOOT W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796-810.
[27] THÉRY C, WITWER KW, AIKAWA E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.
[28] SURKAR SM, HOFFMAN RM, WILLETT S, et al. Hand-Arm Bimanual Intensive Therapy Improves Prefrontal Cortex Activation in Children With Hemiplegic Cerebral Palsy. Pediatr Phys Ther. 2018;30(2):93-100.
[29] SURKAR SM, HOFFMAN RM, HARBOURNE R, et al. Cognitive-Motor Interference Heightens the Prefrontal Cortical Activation and Deteriorates the Task Performance in Children With Hemiplegic Cerebral Palsy. Arch Phys Med Rehabil. 2021;102(2):225-232.
[30] AMUNTS K, SCHLEICHER A, ZILLES K. Persistence of layer IV in the primary motor cortex (area 4) of children with cerebral palsy. J Hirnforsch. 1997; 38(2):247-260.
[31] PARK HJ, KIM CH, PARK ES, et al. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging. J Nucl Med. 2013;54(8):1263-1269.
[32] KHAN B, TIAN F, BEHBEHANI K, et al. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy. J Biomed Opt. 2010;15(3):036008.
[33] MUKHOPADHYAY R, MAHADEVAPPA M, LENKA PK, et al. Therapeutic effects of functional electrical stimulation on motor cortex in children with spastic Cerebral Palsy. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:3432-3435.
[34] GÜMÜŞ E, ARAS BD, ÇILINGIR O, et al. Apolipoprotein E allelic variants and cerebral palsy. Turk J Pediatr. 2018;60(4):361-371.
[35] LIEN E, ANDERSEN GL, BAO Y, et al. Gene sequences regulating the production of apoE and cerebral palsy of variable severity. Eur J Paediatr Neurol. 2014;18(5):591-596.
[36] SAVARD A, BROCHU ME, CHEVIN M, et al. Neuronal self-injury mediated by IL-1β and MMP-9 in a cerebral palsy model of severe neonatal encephalopathy induced by immune activation plus hypoxia-ischemia. J Neuroinflammation. 2015;12:111.
[37] LI H, WANG XL, WU YQ, et al. Correlation of the predisposition of Chinese children to cerebral palsy with nucleotide variation in pri-miR-124 that alters the non-canonical apoptosis pathway. Acta Pharmacol Sin. 2018;39(9): 1453-1462.
|