中国组织工程研究 ›› 2015, Vol. 19 ›› Issue (43): 6906-6912.doi: 10.3969/j.issn.2095-4344.2015.43.004

• 组织工程口腔材料 tissue-engineered oral materials • 上一篇    下一篇

基因修饰牙龈成纤维细胞及脱细胞真皮基质制备牙周组织工程复合物

钟  泉1,李艳芬1,闫福华2   

  1. 1福建医科大学附属口腔医院牙周科,福建省福州市  350002;2南京市口腔医院,南京大学医学院附属口腔医院,江苏省南京市  210008
  • 收稿日期:2015-07-18 出版日期:2015-10-15 发布日期:2015-10-15
  • 通讯作者: 闫福华,博士生导师,教授,主任医师,南京市口腔医院,南京大学医学院附属口腔医院,江苏省南京市 210008
  • 作者简介:钟泉,男,1981年生,湖北省京山县人,汉族,2009年福建医科大学毕业,博士,主治医师,主要从事牙周病的防治研究。
  • 基金资助:

    福建省自然科学基金资助项目(2012J05143);国家自然科学基金资助项目(30471892)

Fabricating periodontal tissue engineering compound by gene modified gingival fibroblasts and acellular dermal matrix

Zhong Quan1, Li Yan-fen1, Yan Fu-hua2   

  1.  1Department of Periodontology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 35002, Fujian Province, China; 2Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
  • Received:2015-07-18 Online:2015-10-15 Published:2015-10-15
  • Contact: Yan Fu-hua, Professor, Chief physician, Doctoral supervisor, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
  • About author:Zhong Quan, M.D., Attending physician, Department of Periodontology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 35002, Fujian Province, China
  • Supported by:

    the Natural Science Foundation of Fujian province, No. 2012J05143; the National Natural Science Foundation of China, No. 30471892

摘要:

背景:前期研究发现人血小板源性生长因子B基因转染的牙龈成纤维细胞能够在体外快速增殖,且能够向胞外分泌血小板源性生长因子BB蛋白。

目的:了解人血小板源性生长因子B基因修饰牙龈成纤维细胞植入脱细胞真皮基质后,在体内形成牙周组织工程化复合物的能力。
方法:将人血小板源性生长因子B基因转染与未转染的Beagle犬牙龈成纤维细胞分别接种于脱细胞真皮基质上,观察细胞在脱细胞真皮基质上的生长情况。将人血小板源性生长因子B基因转染犬牙龈成纤维细胞-脱细胞真皮基质复合物(实验组)、犬牙龈成纤维细胞-脱细胞真皮基质复合物(对照组)及脱细胞真皮基质(空白组)分别植入裸鼠背部皮下,植入后2,4,8周,取背部标本进行组织学观察。
结果与结论:人血小板源性生长因子B基因转染与未转染的犬牙龈成纤维细胞均能在脱细胞真皮基质上良好生长。植入后8周,空白组周围的细胞大面积进入脱细胞真皮基质内,部分脱细胞真皮基质出现完全自体化,尽管细胞进入较多,但新生成的胶原纤维较少,细胞只是占据原有的胶原支架生长;对照组开始出现大面积新生胶原纤维,脱细胞真皮基质上原有的胶原纤维逐步被新生的胶原替代,但原有的胶原结构得到保留;实验组出现大面积完全矿化,可见沿原有胶原支架排列的矿化颗粒。表明接种人血小板源性生长因子B基因修饰牙龈成纤维细胞的脱细胞真皮基质在体内获得了成骨性能。
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

关键词: 生物材料, 口腔生物材料, 脱细胞真皮基质, 牙周组织工程, 人血小板源性生长因子B, 转基因技术, 国家自然科学基金

Abstract:

BACKGROUND: Previous studies have found that human platelet-derived growth factor-B (PDGF-B)-transfected gingival fibroblasts are capable of rapid proliferation in vitro, which can secrete platelet-derived growth factor BB proteins.

OBJECTIVE: To explore the ability of PDGF-B-modified gingival fibroblasts in the acellular dermal matrix in vivo to form periodontal tissue engineering compound.
METHODS: Gingival fibroblasts from Beagle dogs transfected with or without PDGF-B gene were implanted into the acellular dermal matrix. Cell growth on the acellular dermal matrix was observed. PDGF-B gene-transfected gingival fibroblasts/acellular dermal matrix composite (experimental group), gingival fibrobalsts/acellular dermal matrix composite (control group) and acellular dermal matrix (blank group) were implanted subcutaneously into the nude mice, respectively. At 2, 4, 8 weeks after implantation, skin tissues were taken and observed histologically.
RESULTS AND CONCLUSION: PDGF-B gene-modified gingival fibroblasts and non-transfected gingival fibroblasts both grew and proliferated well in the acellular dermal matrix. At 8 weeks after implantation, in the blank group, the surrounding cells largely entered into the acellular dermal matrix, but produce less new collagen fibers, and the cells only grew on the original collagen scaffold; in the control group, a great amount of collagen fibers formed, the original collagen fibers in the acellular dermal matrix were replaced by newly formed collagens, but the original collagen structure was reserved; in the experimental group, a large scale of permineralization formed, and mineralized nodes were arranged along the original collagen scaffold. These findings indicate that PDGF-B gene modified gingival fibroblasts can acquire osteoplastic abilities in the acellular dermal matrix in vivo.
 

Key words: Platelet-Derived Growth Factor, Fibroblasts, Tissue Engineering