[1] AWAD N K, NIU H, ALI U, et al. Electrospun fibrous scaffolds for small-diameter blood vessels: a review. Membranes (Basel). 2018;8(1):15.
[2] JI J, XU H, LI C, et al. Small-Caliber Tissue-Engineered Vascular Grafts Based on Human-Induced Pluripotent Stem Cells: Progress and Challenges. Tissue Eng Part B Rev. 2023;29(4):441-455.
[3] FLIS A, TRÁVNÍČKOVÁ M, KOPER F, et al. Poly(octamethylene citrate) Modified with Glutathione as a Promising Material for Vascular Tissue Engineering. Polymers (Basel). 2023;15(5):1322.
[4] PASHNEH-TALA S, MACNEIL S, CLAEYSSENS F. The tissue-engineered vascular graft-past, present, and future. Tissue Eng Part B Rev. 2016; 22(1):68-100.
[5] MOHAMMADI F, GOLAFSHAN N, KHARAZIHA M, et al. Chitosan-heparin nanoparticle coating on anodized NiTi for improvement of blood compatibility and biocompatibility. Int J Biol Macromol. 2019;127: 159-168.
[6] ZIZHOU R, WANG X, HOUSHYAR S. Review of Polymeric Biomimetic Small-Diameter Vascular Grafts to Tackle Intimal Hyperplasia. ACS Omega. 2022;7:22125-22148.
[7] ZHANG F, KING MW. Immunomodulation Strategies for the Successful Regeneration of a Tissue-Engineered Vascular Graft. Adv Healthc Mater. 2022;11:e2200045.
[8] OBIWELUOZOR FO, KAYUMOV M, KWAK Y, et al. Rapid remodeling observed at mid-term in-vivo study of a smart reinforced acellular vascular graft implanted on a rat model. J Biol Eng. 2023;17:1.
[9] 刘俊,张晓膺.纳米APS外膜肝素化内膜小口径组织工程血管的实验研究[J].上海交通大学学报(医学版),2017,37(3):337-343.
[10] NEMENO-GUANZON JG, LEE S, BERG JR, et al. Trends in tissue engineering for blood vessels. J Biomed Biotechnol. 2012;2012: 956345.
[11] YAO Y, ZAW AM, ANDERSON DEJ, et al. Fucoidan and topography modification improved in situ endothelialization on acellular synthetic vascular grafts. Bioact Mater. 2023;22:535-550.
[12] BAHRAMZADEH E, YILMAZ E, ADALI T. Chitosan-graft-poly(N-hydroxy ethyl acrylamide) copolymers: Synthesis, characterization and preliminary blood compatibility in vitro. Int J Biol Macromol. 2019;123:1257-1266.
[13] 夏成勇,刘长建,冉峰,等.等离子体处理脱细胞血管支架的血液相容性[J].中国组织工程研究与临床康复,2009,13(21):4033-4036.
[14] DU PC, LI XF, SUN LL, et al. Improved hemocompatibility by modifying acellular blood vessels with bivalirudin and its biocompatibility evaluation. J Biomed Mater Res A. 2022;110(3):635-651.
[15] KOPEC K, WOJASINSKI M, EICHLER M, et al. Polydopamine and gelatin coating for rapid endothelialization of vascular scaffolds. Biomater Adv. 2022;134:112544.
[16] TARDALKAR K, MARSALE T, BHAMARE N, et al. Heparin Immobilization of Tissue Engineered Xenogeneic Small Diameter Arterial Scaffold Improve Endothelialization. Tissue Eng Regen Med. 2022;19:505-523.
[17] YANG F, GUO G, WANG Y. Inflammation-triggered dual release of nitroxide radical and growth factor from heparin mimicking hydrogel-tissue composite as cardiovascular implants for anti-coagulation, endothelialization, anti-inflammation, and anti-calcification. Biomaterials. 2022;289:121761.
[18] LV YM, HUANG HM, WANG QL, et al. Acellular porcine aorta matrix as a novel tissue engineered vascular scaffold biocompatibility and mechanical properties. J Cli Reh Tissue Eng Res. 2010;14(47):8921-8925.
[19] QIU H, QI P, LIU J, et al. Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy. Biomaterials. 2019;207:10-22.
[20] 周莹,肖利吉,姚丽,等.自修复型超疏水材料研究进展[J].材料导报,2019,33(7):159-167.
[21] 高云佳,赵庆春,闵鹏,等.脱皮马勃止血有效部位的实验研究[J].解放军药学学报,2010,26(6):82-84.
[22] 高娟.壳聚糖止血活性及其作用机理的初步研究[D].无锡:江南大学,2009.
[23] 秦静雯,王鸿博,傅佳佳,等.醋纤基载药纳米纤维药物活性评价[J].功能材料,2014,45(14):14077-14080.
[24] 欧阳晨曦,李沁,王维慈,等.小口径人工血管血液相容性[J].中国组织工程研究与临床康复,2008,12(6):133-137.
[25] LIU HF, LI XM, ZHOU G, et al. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials. 2011;32:3784-3793.
[26] 陈捷,杨镜秋,刘春晓.灌注法制备全肾脏脱细胞基质支架的体内生物相容性[J].中国组织工程研究,2015,19(16):75-79.
[27] 薛正翔,陈登龙,李敏,等.静电纺丝制备小直径血管支架及其血液相容性的研究[J].功能材料,2009(10):129-132.
[28] 马慧.羟基磷灰石表面构建压电陶瓷涂层的生物相容性研究[D].乌鲁木齐:新疆医科大学,2015.
[29] 贾山山,陈群清,闫玉生.肝素在人工小血管表面改性中的应用[J].中国医学物理学杂志,2018,35(10):126-130.
[30] 马巧,宋文静,冀慧雁,等.血管支架材料的应用及研究现状[J].临床医药实践,2018,27(11):57-62.
[31] 阮烨.冷空气活动对心脑血管疾病相关指标影响的初步研究[D].兰州:兰州大学,2013.
[32] SU H, LIU W, LI X, et al. Cellular energy supply for promoting vascular remodeling of small-diameter vascular grafts: a preliminary study of a new strategy for vascular graft development. Biomater Sci. 2023; 11(9):3197-3213.
[33] OMID H, ABDOLLAHI S, BONAKDAR S, et al. Biomimetic vascular tissue engineering by decellularized scaffold and concurrent cyclic tensile and shear stresses. J Mater Sci Mater Med. 2023;34:12.
[34] 刘桂阳.皮/芯结构的丝素/聚己内酯纤维及其双层血管再生支架[D].苏州:苏州大学,2015.
[35] YAO Y, WANG J, CUI Y, et al. Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomater. 2014; 10(6):2739-2749.
[36] 赵亮,李霞飞,李成成,等.应用Triton-x100加丹参酚酸B制备脱细胞血管支架及其血液相容性研究[J].中国生物医学工程学报, 2019,38(2):201-207.
[37] LIU H, LI X, ZHOU G, et al. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials. 2011;32(15): 3784-3793.
[38] MONTELIONE N, LORENI F, NENNA A, et al. Tissue Engineering and Targeted Drug Delivery in Cardiovascular Disease: The Role of Polymer Nanocarrier for Statin Therapy. Biomedicines. 2023;11(3):798.
[39] LIU Y, YUAN H, LIU Y, et al. Multifunctional nanoparticle-VEGF modification for tissue-engineered vascular graft to promote sustained anti-thrombosis and rapid endothelialization. Front Bioeng Biotechnol. 2023;11:1109058.
[40] 王学宁,陈长志,杨岷,等.肝素处理小口径脱细胞异种血管的移植研究[J].中华胸心血管外科杂志,2006,22(5):324-325. |