[1] 于婉琦,周延民,赵静辉口腔种植体新材料的研究现状[J].国际口腔医学杂志,2019,46(4):488-496.
[2] NAKAYAMA Y, YAMASHITA Y, SHIMOHIRA D, et al. A long-term clinical statistical analysis of machined -surface Branemark implants used in patients undergoingoral and maxillofacial surgery. J Oral Maxillofac Surg Med Pathol. 2019;31(4):237-240.
[3] 贾胜男,邸萍,林野.“All-on-4”种植即刻固定修复后下颌骨生物学改建模式的影像学研究[J].口腔医学研究,2020,36(10):957-961.
[4] MEHMET T, BURAK D, MEHMET G, et al. Effect of hydroxyapatite: zirconia volume fraction ratio on mechanical and corrosive properties of Ti-matrix composite scaffolds. T Nonferr Metal Soc. 2022;32(3): 882-894.
[5] SHARMA SS, SHARMA BB, PARASHAR A. Mechanical and fracture behavior of water submerged graphene. J Appl Phys. 2019;125(21): 215107.1-215107.8.
[6] LIAO C, LI Y, TJONG S. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. Int J Mol Sci. 2018;19(11):3564.
[7] QI Z, CHEN X, GUO W, et al. Theanine-Modified Graphene Oxide Composite Films for Neural Stem Cells Proliferation and Differentiation. J Nanomater. 2020;2020(4):1-10.
[8] ECKHART KE, HOLT BD, LAURENCIN MG, et al. Covalent conjugation of bioactive peptides to graphene oxide for biomedical applications. Biomater Sci. 2019;7(9):3876-3885.
[9] JAIDEV LR, KUMAR S, CHATTERJEE K. Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic, osteogenic and bactericidal properties. Colloids Surf B Biointerfaces. 2017;159:293-302.
[10] LI B, YUAN Z, CHANG F, et al. Preparation and characterization of Cu-GO and Cu-GO-YSZ nanocomposite coating by electrochemical deposition for improved mechanical and anti-corrosion properties. Surf Coat Technol. 2022:439. DOI: 10.1016/j.surfcoat.2022.128441
[11] URIBE R, UVILLÚS A, FERNÁNDEZ L, et al. Electrochemical deposition of hydroxyapatite on stainless steel coated with tantalum/tantalum nitride using simulated body fluid as an electrolytic medium. Coatings. 2022;12(4): 440.
[12] ABDALLAH B. Recent Approaches to Isolating and Culturing Mouse Bone Marrow-derived Mesenchymal Stromal Stem Cells. Curr Stem Cell Res Ther. 2021;16(5):599-607.
[13] WANG X, QIANG A, TIAN X, et al. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering. Materials (Basel). 2016;9(10):802.
[14] XIAO DQ, ZHANG JW, ZHANG CD, et al. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved. Acta Biomater. 2020;106:22-33.
[15] KONISHI T, HONDA M, NAGAYA M, et al. Injectable chelate-setting hydroxyapatite cement prepared by using chitosan solution: fabrication, material properties, biocompatibility, and osteoconductivity. J Biomater Appl. 2017;31(10): 1319-1327.
[16] DE PAULA GA, SILVA GC, VILAÇA ÊL, et al. Biomechanical behavior of tooth-implant supported prostheses with different implant connections: a nonlinear finite element analysis. Implant Dent. 2018; 27(3):294-302.
[17] HSU KW, WEI PC, CHEN YL, et al. Retrospective and Clinical Evaluation of Aftermarket CAD/CAM Titanium Abutments Supporting Posterior Splinted Prostheses and Single Crowns. Int J Oral Maxillofac Implants. 2019;34(5):1161-1168.
[18] 兰静,李彪,孙良丰,等.100 例牙列缺损患者口腔种植修复并发症及其危险因素探讨[J].中国口腔种植学杂志,2020,25(1):20-23.
[19] KHAN MA, RAZAK SA, ARJAN WA, et al. Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review. Molecules. 2021;26(3):619.
[20] LI M, LIU J, CUI X, et al. Osteogenesis effects of magnetic nanoparticles modified-porous scaffolds for the reconstruction of bone defect after bone tumor resection. Regen Biomater. 2019;6(6):373-381.
[21] SHI C, GAO J, WANG M, et al. Functional hydroxyapatite bioceramics with excellent osteoconductivity and stern-interface induced antibacterial ability. Biomater Sci. 2016;4(4):699-710.
[22] STANGO S, KARTHICK D, SWAROOP S, et al. Development of hydroxyapatite coatings on laser textured 316 LSS and Ti-6Al-4V and its electrochemical beHAPvior in SBF solution for orthopedic applications. Ceram Int. 2017;44(3):3149-3160.
[23] GOPI D, INDIRA J, KAVITHA L. A comparative study on the direct and pulsed current electrodeposition of hydroxyapatite coatings on surgical grade stainless steel. Surf Coat Technol. 2012;206(11-12):2859-2869.
[24] SHI YY, LI M, LIU Q, et al. Electrophoretic deposition of graphene oxide reinforced chitosan–hydroxyapatite nanocomposite coatings on Ti substrate. J Mater Sci Mater Med. 2016;27(3):48.
[25] BARADARAN S, MOGHADDAM E, BASIRUN WJ, et al. Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon. 2014;69:32-45.
[26] GAO F, XU C, HU H, et al. Biomimetic synthesis and characterization of hydroxyapatite/graphene oxide hybrid coating on Mg alloy with enhanced corrosion resistance. Mater Lett. 2015;138:25-28.
[27] WU C, XIA L, HAN P, et al. Graphene-oxide-modified β-tricalcium phosphate bioceramics stimulate in vitro and in vivo osteogenesis. Carbon. 2015;93:116-129.
[28] PAPI M. Graphene-Based Materials: Biological and Biomedical Applications. Int J Mol Sci. 2021;22(2):672.
[29] AZADIAN E, ARJMAND B, ARDESHIRYLAJIMI A, et al. Polyvinyl alcohol modified polyvinylidene fluoride‐graphene oxide scaffold promotes osteogenic differentiation potential of human induced pluripotent stem cells. J Cell Biochem. 2020;121(5-6):3185-3196.
[30] ARNOLD AM, HOLT BD, DANESHMANDI L, et al. Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration. Proc Natl Acad Sci U S A. 2019;116(11):4855-4860.
[31] JINLONG L, TONGXIANG L, CHEN W. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings. Appl Surf Sci. 2016;366:353-358.
[32] KARIMI N, KHARAZIHA M, RAEISSI K. Electrophoretic deposition of chitosan reinforced graphene oxide-hydroxyapatite on the anodized titanium to improve biological and electrochemical characteristics. Mater Sci Eng C Mater Biol Appl. 2019;98:140-152.
[33] 刘春影,付丽,汪汉池,等.石墨烯衍生物促进骨再生的研究进展[J].中华口腔医学杂志,2019,54(9):642-645.
[34] LIANG C, LUO Y, YANG G, et al. Graphene oxide hybridized nHAC/PLGA scaffolds facilitate the proliferation of MC3T3-E1 cells. Nanoscale Res Lett. 2018;13(1):15.
[35] HE Y, LI Y, CHEN G, et al. Concentration-dependent cellular behavior and osteogenic differentiation effect induced in bone marrow mesenchymal stem cells treated with magnetic graphene oxide. Biomed Mater Res A. 2020;108(1):50-60.
|