中国组织工程研究 ›› 2022, Vol. 26 ›› Issue (28): 4575-4580.doi: 10.12307/2022.316

• 生物材料综述 biomaterial review • 上一篇    下一篇

静电纺纤维神经组织工程支架:材料、功能及结构设计策略

薛学鑫,刘哲鹏   

  1. 上海理工大学制药技术与设备研究所,上海市  200093
  • 收稿日期:2021-02-22 接受日期:2021-04-15 出版日期:2022-10-08 发布日期:2022-03-24
  • 通讯作者: 刘哲鹏,博士,高级工程师,硕士生导师,上海理工大学制药技术与设备研究所,上海市 200093
  • 作者简介:薛学鑫,男,1995年生,江苏省江阴市人,汉族,上海理工大学在读硕士,主要从事静电纺丝、药物新剂型方面的研究。

Electrospun fiber-based nerve tissue engineering scaffold: material, function and structure design strategy

Xue Xuexin, Liu Zhepeng   

  1. Institute of Pharmaceutical Technology and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2021-02-22 Accepted:2021-04-15 Online:2022-10-08 Published:2022-03-24
  • Contact: Liu Zhepeng, PhD, Senior engineer, Master’s supervisor, Institute of Pharmaceutical Technology and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, China
  • About author:Xue Xuexin, Master candidate, Institute of Pharmaceutical Technology and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, China

摘要:

文题释义:
静电纺丝:在注射泵的推动下,高分子溶液到达针头形成液滴,并在电场作用下形成泰勒锥克服溶液表面张力形成射流,带电的射流在电场中受到电场力的牵引,同时溶剂挥发,形成纺丝纤维落在在接收端。
神经组织工程支架:能与神经细胞结合并植入神经缺损位置,辅助神经细胞增殖、分化,帮助神经组织再生的组织工程支架。

背景:在临床神经修复手术中,自体神经移植供体组织有限,端到端手术重新连接不适合大间隙缺损的情况。因此神经组织工程为神经移植、修复提供了新的思路和方向。
目的:总结归纳近年静电纺丝制备的神经组织工程支架的特点及其制造技术。
方法:以“电纺支架;神经支架;神经组织工程”为中文检索词,以“electrospinning  nerve scaffold;nerve scaffold;nerve tissue-engineering ”为英文检索词,检索CNKI(2015-2021年)及PubMed(2015-2021年)、Web of Science(2015-2021年)数据库中关于静电纺丝神经组织工程支架的研究应用文献。
结果与结论:通过模拟神经细胞外基质的成分、结构及特性,静电纺丝支架能够辅助神经细胞的黏附、增殖和分化,是神经组织工程领域的重要研究方向。静电纺丝支架采用对神经细胞有亲和力的基质材料,使其具备良好的生物相容性和机械性能。对纤维支架进行表面修饰和改性使其功能化或添加辅助神经细胞生长的物质,能够使支架具备特殊性能(导电性、亲水性等),增强生物相容性,改善机械性能,优化支架在体内的降解速度(使有效生长物质缓慢释放),以此促进神经细胞在支架上的黏附、增殖和分化。构建纳米级纤维地形和支架几何空间结构,可以促进神经细胞的黏附、分化,为神经细胞提供生长微环境,增强电纺支架的神经修复能力。静电纺丝神经组织工程支架为神经组织工程提供了重要的研究思路和方向。

https://orcid.org/0000-0001-5021-3694 (薛学鑫) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 静电纺丝, 支架, 神经修复, 组织工程, 综述, 多功能

Abstract: BACKGROUND: In clinical surgery of nerve repair, the donor tissue of autologous nerve grafting is limited, and end-to-end surgical reconnection of the injured nerve ends is not suitable for large gap defects. Therefore, electrospinning nerve scaffold provides a new research idea and direction for nerve tissue engineering. 
OBJECTIVE: To summarize the characteristics and manufacturing technology of the electrospinning nerve tissue engineering scaffold in the past three years.
METHODS: With “electrospinning nerve scaffold; nerve scaffold; nerve tissue-engineering” as the Chinese and English search terms, articles on the research and application of electrospinning nerve tissue engineering scaffolds were retrieved on CNKI (2015-2021), PubMed (2015-2021), and Web of Science (2015-2021). 
RESULTS AND CONCLUSION: By simulating the composition, structure and characteristics of nerve extracellular matrix, the electrospun scaffold can assist the adhesion, proliferation and differentiation of nerve cells, which is an important research direction in the field of neural tissue engineering. The use of matrix materials with affinity for nerve cells gives it good biocompatibility and mechanical properties. Surface modification and modification of the fiber scaffold to make it functional or add substances that assist nerve cell growth can make the scaffold have special properties (conductivity, hydrophilicity, and so on), enhance biocompatibility, improve mechanical properties, and optimize the scaffold degradation rate in the body (slow release of effective growth substances) to promote the adhesion, proliferation and differentiation of nerve cells on the scaffold. Constructing the nano-fiber topography and the geometrical space structure of the scaffold can promote the adhesion and differentiation of nerve cells, provide a microenvironment for the growth of nerve cells, and enhance the nerve repair ability of the electrospun scaffold. Electrospinning nerve tissue engineering scaffolds provide important research ideas and directions for nerve tissue engineering.

Key words: electrospinning, scaffold, nerve repair, tissue engineering, review, multifunctional

中图分类号: