中国组织工程研究 ›› 2021, Vol. 25 ›› Issue (5): 791-797.doi: 10.3969/j.issn.2095-4344.3017

• 组织构建综述 tissue construction review • 上一篇    下一篇

DNA甲基化在运动干预骨质疏松中的作用机制

刘  波,陈祥和,杨  康,余慧琳,陆鹏程Mechanism of DNA methylation in exercise intervention for osteoporosis   

  1. 扬州大学体育学院,江苏省扬州市   225127
  • 收稿日期:2020-04-26 修回日期:2020-04-28 接受日期:2020-05-28 出版日期:2021-02-18 发布日期:2020-12-01
  • 通讯作者: 陈祥和,讲师,博士,扬州大学体育学院,江苏省扬州市 225127
  • 作者简介:刘波,男,1996年生,山西省阳城县人,汉族,扬州大学在读硕士,主要从事运动与骨代谢研究。
  • 基金资助:
    中国博士后科学基金资助(2019M661957)

Mechanism of DNA methylation in exercise intervention for osteoporosis

Liu Bo, Chen Xianghe, Yang Kang, Yu Huilin, Lu Pengcheng   

  1. College of Physical Education, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
  • Received:2020-04-26 Revised:2020-04-28 Accepted:2020-05-28 Online:2021-02-18 Published:2020-12-01
  • Contact: Chen Xianghe, PhD, Lecturer, College of Physical Education, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
  • About author:Liu Bo, Master candidate, College of Physical Education, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
  • Supported by:
    the China Postdoctoral Science Foundation, No. 2019M661957

摘要:

文题释义:
DNA甲基化:是指在不改变基因序列情况下,使基因发生可遗传的表达,DNA甲基化是目前研究最多的表观遗传机制,可以调控相关基因表达调节成骨细胞/破骨细胞活性,进而影响骨代谢。
经典Wnt/β-catenin通路:Wnt蛋白与膜受体卷曲蛋白结合,经过一系列蛋白的相互作用,使β-catenin稳定沉聚,并在细胞核内对T细胞转录因子和淋巴增强因子发生作用,通过启动Runx2及下游基因Osx、远端缺失同源盒基因5等的表达来促进成骨细胞分化、成熟。

背景:成骨细胞介导的骨形成与破骨细胞介导的骨吸收之间的动态平衡是维持机体骨组织稳定的基础,当两者代谢平衡紊乱时造成骨质流失和骨微细结构退化,导致骨质疏松发生。
目的:综述DNA甲基化在骨质疏松中的作用,探讨运动影响DNA甲基化及DNA甲基化调控骨代谢的机制。
方法:检索2002年1月至2020年4月CNKI和PubMed等外文生物医学、生物学、体育学期刊系统相关文献,中文关键词:DNA甲基化;骨质疏松;运动干预;机械应力;成骨分化;英文关键词:DNA methylation; Osteoporosis; Exercise intervention; Mechanical stress; Osteogenic differentiation。排除不符合纳入标准的文献,对入选的52条文献进行归纳总结。
结果与结论:①DNA甲基化是一种相对保守、稳定的表观修饰,其调控基因表达、沉默以及疾病发生;②研究表明,β-catenin、Runx2、骨桥蛋白等基因甲基化水平降低能促进其表达进而活化Wnt通路;而硬化蛋白、核因子κB受体活化因子配体等基因甲基化水平降低则会促进其表达,抑制Wnt通路以及降低OPG/RANKL比例,进而对成骨细胞和破骨细胞的增殖、分化及功能产生影响,从而调节骨形成和骨吸收动态平衡;③成骨细胞和破骨细胞为力学刺激敏感细胞,骨骼能将运动产生的机械负荷转变为生物学刺激作用于相关骨细胞分化及功能的发挥,进而调节骨代谢;④体外实验表明,不同形式的机械应力刺激可以改变骨桥蛋白、GNAS1等基因甲基化水平进而调节其表达,从而对骨形成产生积极作用;⑤骨组织是力学敏感组织,而DNA甲基化能通过调节多种因子来调节骨代谢。
https://orcid.org/0000-0002-3379-1713 (刘波) 

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 运动, DNA, 甲基化, 骨质疏松, 机械应力, 成骨分化, 蛋白, 因子, 通路

Abstract: BACKGROUND: The dynamic balance between bone formation mediated by osteoblasts and bone resorption mediated by osteoclasts is the basis for maintaining the stability of the body’s bone tissue. The metabolic imbalance between them can cause bone loss and fine structure degeneration of the bone cells, leading to osteoporosis. 
OBJECTIVE: To review the role of DNA methylation in osteoporosis and to explore the mechanism of exercise affecting DNA methylation and DNA methylation regulating bone metabolism.
METHODS: A computer-based search of PubMed and CNKI databases was performed for relevant articles published from January 2002 to April 2020 with “DNA methylation; Osteoporosis; Exercise intervention; Mechanical stress; Osteogenic differentiation” as key words in English and Chinese, respectively. Initially, finally 52 eligible articles were included for result analysis. 
RESULTS AND CONCLUSION: DNA methylation is a relatively conservative and stable apparent modification, which regulates gene expression, silencing and disease occurrence. Studies have shown that reduced methylation levels of genes such as β-catenin, Runx2, osteopontin (OPG) can promote their expression and activate Wnt Pathway, whereas the reduction of methylation level of Sclerosin, receptor activator of nuclear factor kappa B ligand (RANKL) and other genes can promote their expression, and inhibit Wnt pathway and reduce the ratio of OPG/RANKL, thereby affecting the proliferation, differentiation and function of osteoblasts and osteoclasts, and accordingly regulating dynamic equilibrium between bone formation and bone resorption. Osteoblasts and osteoclasts act as sensitive cells for mechanical stimulation. Bone can transform the mechanical load generated by exercise into biological stimulation that acts on the differentiation and function of related bone cells, thereby regulating bone metabolism. In vitro experiments have indicated that different forms of mechanical stress stimulations can change the methylation level of genes such as OPN and GNAS1 to regulate their expression, which has a positive effect on bone formation. Bone tissue is a mechanically sensitive tissue, and DNA methylation can regulate bone metabolism by regulating a variety of factors. 

Key words: exercise, DNA, methylation, osteoporosis,  , mechanical stress, osteogenic differentiation, protein, factor, pathway

中图分类号: