中国组织工程研究 ›› 2017, Vol. 21 ›› Issue (6): 962-968.doi: 10.3969/j.issn.2095-4344.2017.06.025

• 生物材料综述 biomaterial review • 上一篇    下一篇

周围神经损伤与再生:新型修补材料的应用研究与进展

全  琦1,苌  彪1,刘若西1,孙  逊1,王  玉1,卢世璧1,彭  江1,赵  庆2
  

  1. 1解放军总医院骨科研究所,北京市再生医学重点实验室,全军战创伤重点实验室,北京市  100853;2解放军总医院第一附属医院骨科,北京市  100048
  • 收稿日期:2016-12-06 出版日期:2017-02-28 发布日期:2017-03-16
  • 通讯作者: 彭江,副研究员,解放军总医骨科研究所,北京市再生医学重点实验室,全军战创伤重点实验室,北京市 100853 赵庆,主任医师,教授,解放军总医院第一附属医院骨科,北京市 100048
  • 作者简介:全琦,男,1989年生,北京市人,汉族,解放军医学院在读博士,主要从事周围神经再生研究。
  • 基金资助:

    国家自然科学基金项目(51073024,51273021);973重点项目(2014CB542201,2012CB518106);十三五国家重大研发计划项目(2016YFC1101600);军队“十三五”医学专项(BWS13C029);301转化医学项目(2016TM-030)

Peripheral nerve injury and regeneration: application and progress of novel nerve scaffolds

Quan Qi1, Chang Biao1, Liu Ruo-xi1, Sun Xun1, Wang Yu1, Lu Shi-bi1, Peng Jiang1, Zhao Qing2 
  

  1. 1Orthopedic Institute of General Hospital of Chinese PLA, Beijing Key Lab of Regenerative Medicine, Key Laboratory of Trauma & War Injuries of Chinese PLA, Beijing 100853, China; 2Department of Orthopaedics, the First Affiliated Hospital of General Hospital of Chinese PLA, Beijing 100048, China
  • Received:2016-12-06 Online:2017-02-28 Published:2017-03-16
  • Contact: Peng Jiang, Associate researcher, Orthopedic Institute of General Hospital of Chinese PLA, Beijing Key Lab of Regenerative Medicine, Key Laboratory of Trauma & War Injuries of Chinese PLA, Beijing 100853, China Zhao Qing, Chief physician, Professor, Department of Orthopaedics, the First Affiliated Hospital of General Hospital of Chinese PLA, Beijing 100048, China
  • About author:Quan Qi, Studying for doctorate, Orthopedic Institute of General Hospital of Chinese PLA, Beijing Key Lab of Regenerative Medicine, Key Laboratory of Trauma & War Injuries of Chinese PLA, Beijing 100853, China
  • Supported by:

    the National Natural Science Foundation of China, No. 51073024, 51273021; 973 key Program of China, No. 2014CB542201, 2012CB518106; the Special Project of the “Thirteenth Five-year Plan” for Medicine Development of Chinese PLA, No. BWS13C029; the Translational Medicine Project of the 301st Hospital of PLA, No. 2016TM-030; the Major Research and Development Project of China during the Thirteenth Five-Year Period, No. 2016YFC1101600

     

摘要:

文章快速阅读:

 

文题释义:
周围神经损伤
:通常是指轴突损伤,轴突是神经元的巨大细胞结构,单维持其本身正常生理功能就是一个挑战,当其受到如挤压、撕裂、甚至完全断裂等损伤后,其末端便开始形成营养不良性小泡,这种早期的变性即为急性轴突损伤,当损伤变得不可逆的时,残端轴突将会在24-72 h发生崩解,之后便是许旺细胞的增殖与巨噬细胞的清理这一不可逆过程。
理想的神经移植物:应该具有如下特点:良好的生物相容性及温和的降解过程,避免引起炎性反应,已有实验证实炎性反应不利于神经再生;仿生结构,管壁允许营养物质与细胞因子的交换,内壁可进行修饰或复合二级空间结构,达到形态仿生;释放与神经再生相关的生长因子;便于临床操作。

背景:虽然自体神经移植是当前治疗大段神经缺损的金标准,但因其应用受到诸多限制,因此科学家从未放弃探索新型神经修补材料。
目的:回顾近年来周围神经损伤领域产生的新观点、再生过程中的关键细胞及新型神经导管的应用。
方法:由第一作者检索2001至2016 年PubMed数据库收录的与组织工程神经支架材料相关的文献,检索词为“peripheral nerve injury,peripheral nerve regeneration,nerve scaffold”,按纳入、排除标准最后共纳入文献76篇进行综述。
结果与结论:周围神经的修复主要集中在如何让再生的神经长得“快”与长得“准”上,未来除了应继续拓展开发生物相容性更好的材料外,还应优化设计,在分子细胞和组织层面多层次模拟神经再生微环境,模拟建立取向纳米结构、化学组分、生物信号时空分布等多重仿生神经移植物。应明确的是,神经导管不应只是简单的力学支撑,还应具有一定功能,如导电、细胞因子梯度缓释等。仿生也不应只局限于形态学上,还应拓展到如细胞因子的时空变化、细胞生物电刺激等方面上来。

关键词: 生物材料, 材料相容性, 周围神经损伤, 周围神经再生, 神经支架, 综述, 国家自然科学基金

Abstract:

BACKGROUND: Autologous nerve grafts are the gold standard for large segment peripheral nerve injury, but in view of its limitations, scientists are researching for novel nerve guidance conduits.
OBJECTIVE: To overview the new view in peripheral nerve injury, key cells associated with axonal regeneration, and application of nerve guidance conduits.
METHODS: The first author retrieved PubMed database for relevant articles about tissue-engineered nerve scaffold published from 2001 to 2016 using the English keywords of “peripheral nerve injury, peripheral nerve regeneration,nerve scaffold”. Finally, 76 articles were enrolled based on the inclusion and exclusion criteria.
RESULTS AND CONCLUSION: Peripheral nerve repair mainly focuses on how to make the regenerative nerve grows “fast” and “accurate”. In the future, we should focus on not only developing better biocompatible materials, but also optimizing the design to simulate the nerve regeneration microenvironment at molecular, cell and tissue levels. The nerve scaffolds used for nerve regeneration not only exert a supporting mechanical effect, but also act as conduct electricity and sustained release of cytokine gradient. Bionics design should be further expanded from the morphology to the spatial changes of cytokines and bioelectric stimulation.

Key words: Peripheral Nerves, Nerve Regeneration, Tissue Engineering

中图分类号: