中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (21): 3088-3096.doi: 10.3969/j.issn.2095-4344.2016.21.007

• 纳米生物材料 nanobiomaterials • 上一篇    下一篇

血管内皮生长因子纳米微球-细菌纤维素复合支架与多种细胞构建组织工程膀胱

张心如,鲁文龙,冯 超,吕向国,朱卫东   

  1. 上海交通大学附属第六人民医院泌尿外科,上海市 200233
  • 收稿日期:2016-03-29 出版日期:2016-05-20 发布日期:2016-05-20
  • 作者简介:张心如,男,1970年生,上海市人,汉族,2009年上海交通大学毕业,博士,副主任医师,主要从事泌尿肿瘤的综合治疗及生物行为研究。

Constructing tissue-engineered bladder by vascular endothelial growth factor nanoparticle-bacterial cellulose composite scaffold with various kinds of cells

Zhang Xin-ru, Lu Wen-long, Feng Chao, Lv Xiang-guo, Zhu Wei-dong   

  1. Department of Urology, Shanghai Sixth People’s Hospital of Shanghai Jiao Tong University, Shanghai 200233, China
  • Received:2016-03-29 Online:2016-05-20 Published:2016-05-20
  • About author:Zhang Xin-ru, M.D., Associate chief physician, Department of Urology, Shanghai Sixth People’s Hospital of Shanghai Jiao Tong University, Shanghai 200233, China

摘要:

 文章快速阅读:

文题释义:
细菌纤维素:
是指在不同条件下,由醋酸菌属、土壤杆菌属、根瘤菌属和八叠球菌属等中的某种微生物合成的纤维素统称,为一种天然β-葡萄糖聚合物,其独特的超细纤维网络结构、卓越的机械性能、低免疫原性、良好的生物相容性使之在生物医学领域引起人们的广泛关注,并已被证明可应用在人工骨、皮肤、人工血管。
纳米微球:是一种粒径在5 nm到1 000 µm的小颗粒,每个颗粒上还有些更细小的孔径,可以作为药物载体、酶载体、导电球、磁珠等广泛应用在生物制药、食品安全检测和医疗诊断等行业。

背景:传统膀胱修补的方法存在损伤正常器官功能、术后并发症多等问题,组织工程为膀胱修复提供了新的途径。
目的:探讨血管内皮生长因子纳米微球-细菌纤维素支架复合兔舌黏膜上皮细胞及舌骨骼肌细胞构建组织工程膀胱的可行性。
方法:分别制备细菌纤维素支架与血管内皮生长因子纳米微球-细菌纤维素支架,将兔舌骨骼肌细胞、舌黏膜上皮细胞依次接种至两种支架上。取6只兔,制备膀胱缺损模型,随机分两组,实验组于缺损处植入复合自体舌骨骼肌细胞、舌黏膜上皮细胞的血管内皮生长因子纳米微球-细菌纤维素支架,对照组于缺损处植入复合自体舌骨骼肌细胞、舌黏膜上皮细胞的细菌纤维素支架。植入后3个月进行膀胱造影、尿动力学及组织学检测。
结果与结论:①造影结果:实验组可见相对完整的膀胱,对照组部分膀胱可见小面积充盈缺损。②尿动力学检测结果:两组的最大膀胱容量和膀胱顺应性均较植入前降低,对照组上述尿动力学参数下降幅度显著高于实验组(P < 0.05)。③组织学检测结果:对照组修复处膀胱组织未能构建出完整的上皮细胞层,其下方仅有少量肌层形成,黏膜下方有少量微血管形成;实验组修复处膀胱组织有完整上皮细胞层形成,可见到黏膜下方有较多肌层形成,黏膜下方有较多量毛细血管形成。④结果表明,将血管内皮生长因子纳米微球-细菌纤维素支架与舌骨骼肌细胞、舌黏膜上皮细胞复合可构建组织工程膀胱。

 

 ORCID: 0000-0003-3998-3676(张心如)

关键词: 生物材料, 纳米材料, 细菌纤维素, 膀胱, 血管内皮生长因子, 舌上皮细胞, 舌肌细胞

Abstract:

BACKGROUND: Traditional bladder repair methods have many problems such as damage to normal organ function and many postoperative complications. Tissue engineering technology provides a new way for bladder repair.

OBJECTIVE: To explore the feasibility of constructing tissue-engineered bladder with vascular endothelial growth factor (VEGF) nanoparticle-bacterial cellulose (BC) composite scaffold with rabbit lingual epithelial cells and tongue muscle cells.
METHODS: Rabbit lingual epithelial cells and muscle cells were successively implanted onto the BC scaffold (control group) and VEGF-BC scaffold (experimental group). Six rabbits were taken to make bladder defect models and randomized into two groups: experimental group implanted with VEGF-BC scaffold carrying autologous lingual epithelial cells and tongue muscle cells, and control group implanted with BC scaffold carrying autologous lingual epithelial cells and tongue muscle cells. Specimens were taken from the two groups for urographic evaluation and histological examination at 3 months after implantation. Meanwhile, the urodynamic tests were performed.

RESULTS AND CONCLUSION: The experimental group showed the relatively complete bladder, and the control group showed a small-area filling defect of the bladder. The maximum bladder capacity and bladder compliance in both two groups were decreased after implantation, especially significantly in the control group (P < 0.05). In the control group, it failed to build a complete epithelial cell layer, and the muscle layer and microvessels were formed a little. In the experimental group, the complete epithelial cell layer was formed, and a larger amount of muscle layers and capillaries appeared. These findings indicate that the VEGF-BC scaffold carrying lingual epithelial cells and tongue muscle cells can be used to construct the tissue-engineered bladder.

 

Key words: Cellulose, Urinary Bladder, Epithelial Cells, Muscle Cells, Tissue Engineering

中图分类号: