中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (16): 2360-2368.doi: 10.3969/j.issn.2095-4344.2016.16.011

• 组织工程口腔材料 tissue-engineered oral materials • 上一篇    下一篇

复合富血小板血浆珊瑚骨修复下颌骨缺损

蒋柳宏1,董 滢2,闫春歌1,刘艳辉1,景向东1   

  1. 1广州中医药大学第一附属医院口腔科,广东省广州市  510405;2广州中医药大学祈福医院口腔科,广东省广州市  511495
  • 收稿日期:2016-03-10 出版日期:2016-04-15 发布日期:2016-04-15
  • 作者简介:蒋柳宏,男,1979年生,硕士,主治医师,主要从事口腔疾病诊治工作。

Mandibular defects repaired by coral bone with platelet rich plasma

Jiang Liu-hong1, Dong Ying2, Yan Chun-ge1, Liu Yan-hui1, Jing Xiang-dong1   

  1. 1Department of Stomatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China; 2Department of Stomatology, Clifford Hospital, Guangzhou University of Chinese Medicine, Guangzhou 511495, Guangdong Province, China
  • Received:2016-03-10 Online:2016-04-15 Published:2016-04-15
  • About author:Jiang Liu-hong, Master, Attending physician, Department of Stomatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China

摘要:

文章快速阅读:

 

文题释义:
富血小板血浆:为高度浓缩的血小板,其中富含多种生长因子,它可促进细胞增殖与分化。自1998年Marx等首次用富血小板血浆复合移植骨修复下颌骨缺损以来,富血小板血浆已逐渐被应用于口腔、整形、骨科、耳鼻喉科、神经外科等领域的组织修复中。
珊瑚骨:为滨珊瑚,其主要成分为碳酸钙,占99%,显微结构为多孔网状,孔径100-300 µm,孔隙率为70%-90%,从结构和成分两方面模拟了天然骨,三维框架结构实现了从纳米到微米级别的骨仿生。多孔的结构,尤其是互联的通道,利于营养的传递和细胞的迁移。


 

背景:富血小板血浆含有多种骨生长所需的生长因子,如血小板源性生长因子、转移性生长因子、类胰岛素生长因子、表皮生长因子和血管内皮细胞生长因子等,在骨再生的各个不同阶段直接或间接促进细胞的分化与增殖,促进新骨再生。
目的:观察复合富血小板血浆珊瑚骨修复骨缺损的效果。
方法:将24只新西兰大白兔随机分为3组,每组8只,建立单侧下颌骨缺损模型,实验组于骨缺损处植入复合自体富血小板血浆的珊瑚骨,对照组于骨缺损处植入珊瑚骨,空白对照组不植入任何材料。术后2,4,8,12周进行影像学观察和骨组织形态计量学分析。
结果与结论:①X射线检查结果:术后12周时,空白对照组缺损区整体密度增高,略低于周围骨组织;实验组、对照组缺损区密度接近宿主骨,材料与新生组织充分结合,且实验组骨密度高于对照组。②骨组织形态计量学分析结果:术后12周内,实验组新骨面积显著高于对照组、空白对照组(P < 0.05)。③结果表明,复合富血小板血浆珊瑚骨具有良好的生物相容性和骨传导性,作为框架材料可引导再生骨向缺损内生长,促进骨缺损修复。
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程
ORCID: 0000-0003-2108-4111(蒋柳宏)

关键词: 生物材料, 骨生物材料, 富血小板血浆, 珊瑚骨, 下颌骨缺损, 骨诱导

Abstract:

BACKGROUND: Platelet rich plasma contains various growth factors, such as platelet-derived growth factor, metastatic growth factor, insulin-like growth factor, epidermal growth factor as well as vascular endothelial growth factor. Therefore, it can directly or indirectly promote cell differentiation and proliferation in different stages of bone regeneration.

OBJECTIVE: To study the effects of coral bone with platelet rich plasma in the repair of mandibular defects.
METHODS: Totally 24 New Zealand white rabbits were randomly divided into three groups (n=8 per group) including test group, control group and blank control group. Coral bone with autologous platelet rich plasma, coral bone or nothing was implanted, respectively, after establishing unilateral mandibular defect models. The defects were evaluated by imaging observation and bone his-tomorphometric analysis at 2, 4, 8, 12 weeks after surgery.
RESULTS AND CONCLUSION: At 12 weeks after surgery, by imaging observation, density of the defect increased in the blank control group, which was lower than that of the normal bone; the bone density in the test group was higher than that in the control group, both of which were similar with the normal bone. Besides, the materials were closely combined with the new tissues. By bone his-tomorphometric analysis, area of the new bone in the test group was significantly larger than that in the control and blank control group (P < 0.05). In conclusion, coral bone with platelet rich plasma has good biocompatibility and bone conductivity, which can induce bone regeneration to promote defect repair.
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

Key words: Platelet-Rich Plasma, Mandible, Tissue Engineering