[1] American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(Suppl 1): S67-74.
[2] Sims NA, Gooi JH. Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol. 2008;19(5):444-451.
[3] Saha MT, Sievänen H, Salo MK, et al. Bone mass and structure in adolescents with type 1 diabetes compared to healthy peers. Osteoporos Int. 2009;20(8): 1401-1406.
[4] Mastrandrea LD, Wactawski-Wende J, Donahue RP, et al. Young women with type 1 diabetes have lower bone mineral density that persists over time. Diabetes Care. 2008;31(9): 1729-1735.
[5] Forsen L, Meyer HE, Midthjell K, et al. Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trøndelag Health Survey. Diabetologia. 1999;42(8): 920-925.
[6] Nicodemus KK, Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 2001;24(7): 1192-1197.
[7] Abdulameer SA, Sulaiman SAS, Hassali MAA, et al. Osteoporosis and type 2 diabetes mellitus: what do we know, and what we can do? Patient Prefer Adherence. 2012;6:435.
[8] Patsch JM, Burghardt AJ, Yap SP, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013;28(2): 313-324.
[9] Melton LJ, Leibson CL, Achenbach SJ, et al. Fracture Risk in Type 2 Diabetes: Update of a Population‐Based Study. J Bone Miner Res. 2008;23(8): 1334-1342.
[10] Sealand R, Razavi C, Adler RA. Diabetes Mellitus and Osteoporosis. Curr Diab Rep. 2013;13(3):411-418.
[11] Wongdee K, Charoenphandhu N. Osteoporosis in diabetes mellitus: possible cellular and molecular mechanisms. World J Diabetes. 2011;2(3): 41.
[12] Matsuo K, Irie N. Osteoclast–osteoblast communication. Arch Biochem Biophys. 2008;473(2): 201-209.
[13] Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007;40(2): 251-264.
[14] R?szer T. Inflammation as death or life signal in diabetic fracture healing. Inflamm Res. 2011;60(1): 3-10.
[15] Kayal RA, Tsatsas D, Bauer MA, et al. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res. 2007;22(4): 560-568.
[16] Coe LM, Irwin R, Lippner D, et al. The bone marrow microenvironment contributes to type I diabetes induced osteoblast death. J Cell Physiol. 2011;226(2): 477-483.
[17] Pater A, Sypniewska G, Pilecki O. Biochemical markers of bone cell activity in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2010;23(1-2): 81-86.
[18] Botolin S, Faugere MC, Malluche H, et al. Increased bone adiposity and peroxisomal proliferator-activated receptor-γ2 expression in type I diabetic mice. Endocrinology. 2005;146(8): 3622-3631.
[19] Massé PG, Pacifique MB, Tranchant CC, et al. Bone metabolic abnormalities associated with well-controlled type 1 diabetes (IDDM) in young adult women: a disease complication often ignored or neglected. J Am Coll Nutr. 2010; 29(4): 419-429.
[20] Gopalakrishnan V, Vignesh RC, Arunakaran J, et al. Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages. Biochem Cell Biol. 2006;84(1): 93-101.
[21] Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res. 2011; 26(4): 677-680.
[22] Kanazawa I, Yamaguchi T, Yamamoto M, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009, 94(1): 45-49.
[23] Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3): 456-469.
[24] Oury F, Sumara G, Sumara O, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144(5): 796-809.
[25] Hamann C, Kirschner S, Günther KP, et al. Bone, sweet bone-osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol. 2012; 8(5): 297-305.
[26] Pittas AG, Nelson J, Mitri J, et al. Plasma 25-Hydroxyvitamin D and Progression to Diabetes in Patients at Risk for Diabetes An ancillary analysis in the Diabetes Prevention Program. Diabetes Care. 2012;35(3): 565-573.
[27] Harris SS, Pittas AG, Palermo NJ. A randomized, placebo-controlled trial of vitamin D supplementation to improve glycaemia in overweight and obese African Americans. Diabetes Obes Metab. 2012;14(9): 789-794.
[28] Wang W, Zhang X, Zheng J, et al. High glucose stimulates adipogenic and inhibits osteogenic differentiation in MG-63 cells through cAMP/protein kinase A/extracellular signal-regulated kinase pathway. Molecul Cell Biochem. 2010;338(1-2): 115-122.
[29] Botolin S, Faugere MC, Malluche H, et al. Increased bone adiposity and peroxisomal proliferator-activated receptor-γ2 expression in type I diabetic mice. Endocrinology. 2005; 146(8): 3622-3631.
[30] Lu H, Kraut D, Gerstenfeld LC, et al. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology. 2003;144(1): 346-352.
[31] Moerman EJ, Teng K, Lipschitz DA, et al. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR‐γ2 transcription factor and TGF-β/BMP signaling pathways. Aging Cell. 2004;3(6): 379-389.
[32] Botolin S, McCabe LR. Inhibition of PPARγ prevents type I diabetic bone marrow adiposity but not bone loss. J Cell Physiol. 2006;209(3): 967-976.
[33] Jang WG, Kim EJ, Bae IH, et al. Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone. 2011;48(4): 885-893.
[34] Kawai M, Sousa KM, MacDougald OA, et al. The many facets of PPARγ: novel insights for the skeleton. Am J Physiol Endocrinol Metab. 2010;299(1): E3-9.
[35] Zaidi M. Skeletal remodeling in health and disease. Nat Med. 2007;13(7): 791-801.
[36] Vestergaard P. Bone metabolism in type 2 diabetes and role of thiazolidinediones. Curr Opin Endocrinol Diabetes Obes. 2009;16(2): 125-131.
[37] Hill PA, Tumber A, Meikle MC. Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology. 1997;138(9): 3849-3858.
[38] Thomas DM, Udagawa N, Hards DK, et al. Insulin receptor expression in primary and cultured osteoclast-like cells. Bone. 1998;23(3): 181-186.
[39] Pastor MMC, Lopez-Ibarra PJ, Escobar-Jimenez F, et al. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteop Int. 2000; 11(5): 455-459.
[40] Nixon AJ, Lillich JT, Burton‐Wurster N, et al. Differentiated cellular function in fetal chondrocytes cultured with insulin-like growth factor-I and transforming growth factor-β. J Orthop Res. 1998;16(5): 531-541.
[41] Conover CA, Lee PD, Riggs BL, et al. Insulin-like growth factor-binding protein-1 expression in cultured human bone cells: regulation by insulin and glucocorticoid. Endocrinology. 1996;137(8): 3295-3301.
[42] Moyer-Mileur LJ, Slater H, Jordan KC, et al. IGF-1 and IGF-Binding Proteins and Bone Mass, Geometry, and Strength: Relation to Metabolic Control in Adolescent Girls With Type 1 Diabetes. J Bone Miner Res. 2008;23(12): 1884-1891.
[43] Bronský J, Pr?ša R. Amylin fasting plasma levels are decreased in patients with osteoporosis. Osteop Int. 2004; 15(3): 243-247.
[44] Horcajada-Molteni MN, Chanteranne B, Lebecque P, et al. Amylin and Bone Metabolism in Streptozotocin-Induced Diabetic Rats. J Bone Miner Res. 2001;16(5): 958-965.
[45] Dacquin R, Davey RA, Laplace C, et al. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol. 2004;164(4): 509-514.
[46] Cornish J, Callon KE, Bava U, et al. Preptin, another peptide product of the pancreatic β-cell, is osteogenic in vitro and in vivo. Ame J Physiol Endocrinol Metabol. 2007;292(1): E117-122.
[47] Lecka-Czernik B, Gubrij I, Moerman EJ, et al. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2. J Cell Biochem. 1999;74(3): 357-371.
[48] Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2): 197-207.
[49] Ducy P, Karsenty G. The two faces of serotonin in bone biology. J Cell Biol. 2010;191(1): 7-13.
[50] Kawai M, Devlin MJ, Rosen CJ. Fat targets for skeletal health. Nat Rev Rheumatol. 2009;5(7): 365-372.
[51] Hedbacker K, Birsoy K, Wysocki RW, et al. Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metabol. 2010; 1(1): 11-22.
[52] Vlassara H, Striker GE. AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol. 2011;7(9): 526-539.
[53] McCarthy AD, Molinuevo MS, Cortizo AM. Ages and Bone Ageing in Diabetes Mellitus. J Diabetes Metab. 2013;4(276): 2.
[54] Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteop Int. 2010;21(2): 195-214.
[55] Schwartz AV, Garnero P, Hillier TA, et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metabol. 2009;94(7): 2380-2386.
[56] Yamamoto M, Yamaguchi T, Yamauchi M, et al. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(3): 1013-1019.
[57] Fernández JM, Molinuevo MS, Sedlinsky C, et al. Strontium ranelate prevents the deleterious action of advanced glycation endproducts on osteoblastic cells via calcium channel activation. Europ J Pharmacol. 2013;706(1-3):41-77.
[58] Molinuevo MS, Schurman L, McCarthy AD, et al. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res. 2010;25(2): 211-221. |