中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (22): 3457-3463.doi: 10.12307/2024.489

• 膜生物材料 membrane biomaterials • 上一篇    下一篇

丝素蛋白/生物活性玻璃复合纤维膜的制备及性能表征

王  璐,徐  婕,夏一菁,张新松,赵  彬   

  1. 山西医科大学口腔医(学)院,口腔疾病防治与新材料山西省重点实验室,山西省太原市  030001
  • 收稿日期:2023-08-02 接受日期:2023-09-25 出版日期:2024-08-08 发布日期:2024-01-19
  • 通讯作者: 赵彬,教授,博士生导师,山西医科大学口腔医(学)院,口腔疾病防治与新材料山西省重点实验室,山西省太原市 030001
  • 作者简介:王璐,女,1986年生,山西省太原市人,汉族,博士,讲师,主要从事骨组织再生工程研究。 徐婕,女,1997年生,山西省大同市人,汉族,在读硕士,主要从事骨组织再生工程研究。
  • 基金资助:
    山西省研究生教育创新计划(研究生科研创新项目)(2023KY419),项目负责人:徐婕;山西省基础研究计划(自由探索类)项目(202203021211225),项目负责人:王璐;山西省医学重点科技项目计划引导性科技专项(2022XM56),项目负责人:王璐

Preparation and characterization of silk fibroin/bioactive glass composite fiber membrane

Wang Lu, Xu Jie, Xia Yijing, Zhang Xinsong, Zhao Bin   

  1. School and Hospital of Stomatology of Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi Province, China
  • Received:2023-08-02 Accepted:2023-09-25 Online:2024-08-08 Published:2024-01-19
  • Contact: Zhao Bin, Professor, Doctoral supervisor, School and Hospital of Stomatology of Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi Province, China
  • About author:Wang Lu, MD, Lecturer, School and Hospital of Stomatology of Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi Province, China Xu Jie, Master candidate, School and Hospital of Stomatology of Shanxi Medical University, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi Province, China
  • Supported by:
    Shanxi Provincial Graduate Education Innovation Program (Graduate Research Innovation Project), No. 2023KY419 (to XJ); Basic Research Program of Shanxi Province (Free Exploration), No. 202203021211225 (to WL); Shanxi Province Medical Key Science and Technology Project Plan Guided Science and Technology Special Purpose, No. 2022XM56 (to WL)

摘要:


文题释义:

引导骨再生:将所制备的人工生物膜放置于软组织与骨缺损之间,依据各类细胞不同的迁移速度,利用引导骨再生膜的屏障作用隔绝外侧快速增殖的成纤维细胞,允许内侧成骨细胞不受干扰的生长,从而实现骨组织修复再生。
静电纺丝技术:是一种特殊的纤维制造工艺,置于注射器内的聚合物溶液在强电场的作用下被拉伸形成泰勒锥,且快速固化成超细纤维沉积在收集器上。通过设计不同的实验条件(如改变喷头结构、控制接收器转速等)可以获得核壳结构的超细纤维、高度取向纤维或无序纤维膜等。


背景:在构建具有生物功能的引导骨再生膜时,单一材料因功能不足而无法满足临床上的需要,因此将多种材料复合已成为目前组织修复工程的一种趋势。

目的:通过静电纺丝技术制备丝素蛋白/生物活性玻璃复合纤维膜,表征其理化性能和体外生物相容性。
方法:将0.8 g丝素蛋白溶解于10 mL六氟异丙醇中制备静电纺丝溶液,利用静电纺丝技术制备丝素蛋白纳米纤维膜(记为SF纤维膜);将0.1,0.3,0.5,0.8 g的生物活性玻璃分别加入静电纺丝溶液中,利用静电纺丝技术制备丝素蛋白/生物活性玻璃复合纤维膜(依次记为SF/1BG、SF/3BG、SF/5BG、SF/8BG纤维膜)。表征5组纤维膜的理化性能及生物相容性。

结果与结论:①扫描电镜下可见5组纤维表面光滑、连续且均匀,无串珠样结构,丝纤维之间无明显粘连,均表现出随机排布的无序多孔结构,添加生物活性玻璃后纤维膜的纤维直径减小。傅里叶红外光谱与X射线衍射检测显示,纤维膜中丝素蛋白与生物活性玻璃的化学结构稳定。SF、SF/1BG、SF/3BG、SF/5BG、SF/8BG纤维膜表面的水接触角分别为105.02°,72.58°,78.13°,79.35°,72.50°。②将骨髓间充质干细胞分别接种于5组纤维膜上,CCK-8检测显示相较于SF、SF/8BG纤维膜,SF/1BG、SF/3BG、SF/5BG纤维膜可促进骨髓间充质干细胞的增殖;活/死细胞染色显示5组纤维膜表面的细胞活力较好,其中SF/5BG纤维膜表面的细胞数量更多、分布更均匀;罗丹明-鬼笔环肽染色与扫描电镜观察显示相较于SF纤维膜,SF/5BG纤维膜更有利于骨髓间充质干细胞的黏附。将骨髓间充质干细胞分别接种于5组纤维膜上进行成骨诱导分化,SF/3BG、SF/5BG组碱性磷酸酶活性高于其他3组(P < 0.05,P < 0.01,P < 0.001);茜素红染色显示,添加生物活性玻璃后纤维膜的钙结节形成增加,并且以SF/5BG组钙结节形成最多。③结果表明,丝素蛋白/生物活性玻璃复合纤维膜具有良好的生物安全性和生物相容性。

https://orcid.org/0009-0007-5566-2852(王璐);https://orcid.org/0009-0003-9472-5423(徐婕)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 静电纺丝, 引导骨再生, 生物活性玻璃, 丝素蛋白, 牙槽骨缺损, 修复再生

Abstract: BACKGROUND: In the construction of guided bone regeneration membrane with biological function, a single material cannot meet the clinical needs due to its insufficient function, so the composite of multiple materials has become a trend of tissue repair engineering. 
OBJECTIVE: To prepare silk fibroin/bioactive glass composite fiber membranes by electrospinning technology, and to characterize the physicochemical properties and biocompatibility in vitro. 
METHODS: The solution of electrospinning was prepared by dissolving 0.8 g silk fibroin protein in 10 mL hexafluoro-isopropanol alcohol, and the nanofiber membrane of silk fibroin protein was prepared by electrospinning technology (denoted as SF fiber membrane). 0.1, 0.3, 0.5, and 0.8 g of bioactive glass were added to the electrospinning solution, and the silk fibroin/bioactive glass composite fiber membrane was prepared by electrospinning technology (recorded as SF/1BG, SF/3BG, SF/5BG, and SF/8BG fiber membrane in turn). The physicochemical properties and biocompatibility of five groups of fiber membranes were characterized. 
RESULTS AND CONCLUSION: (1) The scanning electron microscopy results showed that nanofibers of the prepared composite membrane were smooth, continuous and uniform and had no beaded structure. There was no obvious adhesion between the silk fibers, and they all showed random arrangement of disordered porous structures. The fiber diameter of the fiber membrane decreased after the addition of bioactive glass. Fourier infrared spectroscopy and X-ray diffraction detection results showed that the chemical structure of silk fibroin protein and bioactive glass in fiber membrane was stable. The water contact angles of SF, SF/1BG, SF/3BG, SF/5BG, and SF/8BG were 105.02°, 72.58°, 78.13°, 79.35°, and 72.50°, respectively. (2) Bone marrow mesenchymal stem cells were inoculated on five groups of fiber membranes. CCK-8 assay results showed that SF/1BG, SF/3BG, and SF/5BG fiber membranes could promote the proliferation of bone marrow mesenchymal stem cells compared with SF and SF/8BG. Live cell/dead cell staining showed that the cell vitality on the surface of the five groups of fiber membranes was better, and the number and distribution of cells on the surface of SF/5BG fiber membrane were more uniform. Rhodamine phalloidin staining and scanning electron microscopy exhibited that compared with SF fiber membrane, the SF/5BG fiber membrane was more favorable to the adhesion of bone marrow mesenchymal stem cells. Bone marrow mesenchymal stem cells were inoculated on the fiber membrane of the five groups for osteogenic induction differentiation, and the alkaline phosphatase activity of the SF/3BG and SF/5BG groups was higher than that of the other three groups (P < 0.05, P < 0.01, P < 0.001). Alizarin red staining showed that the formation of calcium nodules in fiber membrane increased after the addition of bioactive glass, and the formation of calcium nodules in the SF/5BG group was the most. (3) The results show that silk fibroin/bioactive glass composite fiber membrane has good biosafety and biocompatibility.

Key words: eletrospun, guided bone regeneration, bioactive glass, silk fibroin, alveolar bone defect, repair and regeneration

中图分类号: