中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (17): 2682-2689.doi: 10.12307/2024.472

• 组织工程口腔材料 tissue-engineered oral materials • 上一篇    下一篇

聚偏二氟乙烯压电泡沫支架制备及其骨诱导活性

覃思语1,宋  力2,3,陈俊宇1,李怡俊2,万乾炳1   

  1. 1口腔疾病防治全国重点实验室,国家口腔医学中心,国家口腔疾病临床医学研究中心,四川大学华西口腔医院修复科,四川省成都市  610041;2高分子材料工程国家重点实验室(四川大学),四川大学高分子研究所,四川省成都市  610065;3功能高分子材料教育部重点实验室,南开大学化学学院,天津市  300071
  • 收稿日期:2023-06-12 接受日期:2023-08-21 出版日期:2024-06-18 发布日期:2023-12-15
  • 通讯作者: 万乾炳,教授,博士生导师,口腔疾病防治全国重点实验室,国家口腔疾病临床医学研究中心,四川大学华西口腔医院修复科,四川省成都市 610041
  • 作者简介:覃思语,女,1997年生,湖北省恩施土家族苗族自治州人,土家族,四川大学华西口腔医学院在读博士,主要从事血管化组织工程学方向的研究。
  • 基金资助:
    国家自然科学基金项目(81970984),项目负责人:万乾炳,项目名称:基于骨微环境设计的ZIF-8/SIM组织工程支架对于颌骨缺损的修复作用及其机制研究;国家自然科学基金项目(82270961),项目负责人:陈俊宇,项目名称:基于Notch信号阶段式调控的血管新生体系改善颌骨血管衰老状态的机制研究

Preparation and osteoinductivity of piezoelectric polyvinylidene fluoride foam-based scaffold

Qin Siyu1, Song Li2, 3, Chen Junyu1, Li Yijun2, Wan Qianbing1   

  1. 1State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China; 2State Key Laboratory of Polymer Materials Engineering (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan Province, China; 3Key Laboratory of Functional Polymer Materials of Ministry of Education,  College of Chemistry, Nankai University, Tianjin 300071, China
  • Received:2023-06-12 Accepted:2023-08-21 Online:2024-06-18 Published:2023-12-15
  • Contact: Wan Qianbing, Professor, Doctoral supervisor, State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
  • About author:Qin Siyu, Doctoral candidate, State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Supported by:
    National Natural Science Foundation of China, No. 81970984 (to WQB); National Natural Science Foundation of China, No. 82270961 (to CJY)

摘要:


文题释义:

压电材料:具有直接压电效应(受力产生形变从而产生电荷)和反向压电效应(材料响应施加的电场而变形)两种特征,特点是无需外部电源可实现自发电,是提供内源性电刺激的良好来源,其中聚偏二氟乙烯是一种应用较为广泛的压电聚合物。
固相剪切碾磨力化学:通过剪切、环向应力、挤压等多重作用机制对物料施加强烈的三维剪切,实现了室温粉碎,提高了物料的粉碎效率,降低了粉体的粒度分布,提高了材料的开孔性结构且赋予其良好的柔性,制备过程简单、节能、无污染。


背景:骨是一种天然压电材料,具有仿生压电效应的组织工程材料可应用于骨组织缺损的修复。

目的:基于固相力化学技术制备一种有促成骨能力的压电支架材料,表征其对成骨细胞黏附、增殖和成骨分化能力的影响。
方法:通过固相剪切碾磨技术混合不同质量比例的聚偏二氟乙烯及NaCl粉体(质量比分别为60∶40、50∶50、40∶60、30∶70),熔融下形成块状材料后通过纯水溶解去除NaCl,最终制备得到具有不同孔隙率的聚偏二氟乙烯压电泡沫支架(依次命名为PVDF-40、PVDF-50、PVDF-60、PVDF-70)。表征各组支架表面形貌、晶相构成、热力学行为、机械性能、压电性能。将4组支架分别与MG63细胞共培养,检测支架的生物相容性及促成骨分化能力。

结果与结论:①扫描电镜下可见4组支架具有多层级孔隙,随着混合粉体中NaCl质量分数的增加,支架的孔隙率升高;X射线能量色散谱、X射线衍射图谱、傅里叶变换红外光谱及热失重分析结果显示,4组支架材料主体为不具压电性的α相,固相力化学激发出更多β相,以增强其压电性能,其中PVDF-60组β相含量占比最高;循环压缩测试及压电性能测试结果显示,PVDF-60组相较其他组拥有更高的压缩强度和压电性能;②扫描电镜与激光共聚焦显微镜下可见MG63细胞良好地黏附于4组支架表面,细胞形态良好并伸出较多的伪足、分泌大量细胞外基质;CCK-8实验显示,PVDF-60组培养4 d的细胞增殖吸光度值高于其他3组(P < 0.000 1);碱性磷酸酶染色及茜素红染色显示,PVDF-60组碱性磷酸酶表达与钙化结节数量均高于其他3组(P < 0.01,P < 0.000 1);③聚偏二氟乙烯压电泡沫支架均具有较好的细胞相容性,其中PVDF-60组具有更优异的力学性能、压电性能和骨诱导能力。

https://orcid.org/0000-0002-4890-5816(覃思语);https://orcid.org/0000-0002-0028-5881(万乾炳)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 骨组织工程, 压电材料, 泡沫支架材料, 聚偏二氟乙烯, 成骨分化, 固相力化学

Abstract: BACKGROUND: Bone is a remarkable natural material possessing piezoelectric properties. By harnessing the biomimetic piezoelectric effect, tissue engineering materials can be employed to effectively address bone tissue defects and facilitate their repair.
OBJECTIVE: Using a solid-phase force chemistry technique, a piezoelectric scaffold with inherent osteogenic properties was meticulously fabricated. This unique scaffold was then assessed for its impact on osteoblast adhesion, proliferation, and osteogenic differentiation.
METHODS: Polyvinylidene fluoride (PVDF) powders, along with commercially available NaCl (mass ratios are 60:40, 50:50, 40:60, and 30:70, respectively), were subjected to solid-phase shear milling technology, resulting in a homogenous mixture. Through a melting process, a substantial material was formed, and subsequent treatment with a pure water solution effectively eliminated the NaCl. Consequently, PVDF piezoelectric foam scaffolds with varying pore sizes were successfully prepared. These materials were categorized as PVDF-40, PVDF-50, PVDF-60, and PVDF-70, denoting the respective mass percentages of NaCl during preparation. The surface morphology, crystal phase composition, thermodynamic behavior, mechanical properties, and piezoelectric properties of each group were meticulously characterized. The four kinds of piezoelectric foam scaffolds were co-cultured with the MG63 osteoblast cell line to evaluate its biocompatibility and potential to promote bone differentiation. 
RESULTS AND CONCLUSION: (1) The scanning electron microscopy, four groups of scaffolds had multi-level pores. As the NaCl mass fraction in the mixed powder increased, the porosity of the scaffolds increased. X-ray energy dispersion spectrum, X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis collectively revealed the scaffold predominantly comprised the α phase, which inherently lacked piezoelectric properties. However, the application of solid-phase force chemistry successfully stimulated the formation of the β phase, thereby enhancing the scaffold’s piezoelectric properties. Notably, the PVDF-60 group exhibited the highest proportion of the β phase among all the tested groups. The results of cyclic compression testing and piezoelectric performance assessment demonstrated that the PVDF-60 group exhibited superior compressive strength and piezoelectric performance compared to the other groups. (2) The findings from scanning electron microscopy and laser confocal microscopy exhibited that MG63 cells adhered well to the surface of the four groups of scaffolds, with good morphology, extended more pseudopods, and secreted a large amount of extracellular matrix. CCK-8 assay revealed that the proliferative absorbance of PVDF-60 cells cultured for 4 days was higher than that of the other three groups (P < 0.000 1). Alkaline phosphatase staining and alizarin red staining showed that the expression of alkaline phosphatase and the number of calcified nodules in the PVDF-60 group were higher than those in the other three groups (P < 0.01, P < 0.000 1). (3) The piezoelectric PVDF  foam-based scaffolds demonstrated favorable cytocompatibility. Notably, the PVDF-60 group showed superior mechanical properties, piezoelectric performance, and bone-inducing capabilities.

Key words: bone tissue engineering, piezoelectric material, foam scaffold material, polyvinylidene fluoride, osteogenic differentiation, solid phase force chemistry

中图分类号: