[1] AHMAD S, HERACLIDES A, SUN Q, et al. Telomere length in blood and skeletal muscle in relation to measures of glycaemia and insulinaemia. Diabet Med. 2012;29(10):e377-e381.
[2] MAYNARD S, KEIJZERS G, HANSEN AM, et al. Associations of subjective vitality with DNA damage, cardiovascular risk factors and physical performance. Acta Physiol (Oxf). 2015;213(1):156-170.
[3] 陈璐,司佳卉,孙点剑一,等.中国成年人生活方式和心血管代谢因素与甲基化年龄加速的相关性分析[J].中华流行病学杂志,2022,43(7):1019-1029.
[4] ZSURKA G, PEEVA V, KOTLYAR A, et al. Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging. Genes (Basel). 2018;9(4):175.
[5] HUANG E, CHENG SH, DRESSMAN H, et al. Gene expression predictors of breast cancer outcomes. Lancet. 2003;361(9369):1590-1596.
[6] HANNUM G, GUINNEY J, ZHAO L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359-367.
[7] 胡晓磐,李世昌,孙朋.运动对骨质影响的表观遗传机制研究进展[J].体育科学,2020,40(4):59-66.
[8] BARRÓN-CABRERA E, RAMOS-LOPEZ O, GONZÁLEZ-BECERRA K, et al. Epigenetic Modifications as Outcomes of Exercise Interventions Related to Specific Metabolic Alterations: A Systematic Review. Lifestyle Genom. 2019;12(1-6):25-44.
[9] 杨园,叶啟发,杨翼.运动调节衰老的表观遗传机制研究进展[J].中国运动医学杂志,2019,38(8):712-716.
[10] DENHAM J, O’BRIEN BJ, PRESTES PR, et al. Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres. J Appl Physiol (1985). 2016;120(2):148-158.
[11] DENHAM J, NELSON CP, O’BRIEN BJ, et al. Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors. PLoS One. 2013;8(7):e69377.
[12] CASSIDY S, THOMA C, HOUGHTON D, et al. High-intensity interval training: a review of its impact on glucose control and cardiometabolic health. Diabetologia. 2017;60(1):7-23.
[13] DENHAM J, MARQUES FZ, BRUNS EL, et al. Epigenetic changes in leukocytes after 8 weeks of resistance exercise training. Eur J Appl Physiol. 2016;116(6):1245-1253.
[14] BARRÈS R, YAN J, EGAN B, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405-411.
[15] 刘辰东,杨露,蒲红州,等.运动对骨骼肌基因表达的表观遗传调控作用[J].遗传,2017,39(10):888-896.
[16] ÇAKIR-ATABEK H, ÖZDEMIR F, ÇOLAK R. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males. Biol Sport. 2015;32(4):321-328.
[17] 王冬冬.补充虾青素对人体急性大强度运动恢复期代谢影响的1H-NMR研究[D].太原:山西大学,2017.
[18] BELVIRANLI M, GÖKBEL H. Acute exercise induced oxidative stress and antioxidant. Front Physiol. 2006;3(3):126-131.
[19] REICHHOLD S, NEUBAUER O, EHRLICH V, et al. No acute and persistent DNA damage after an Ironman triathlon. Cancer Epidemiol Biomarkers Prev. 2008; 17(8):1913-1919.
[20] TRYFIDOU DV, MCCLEAN C, NIKOLAIDIS MG, et al. DNA Damage Following Acute Aerobic Exercise: A Systematic Review and Meta-analysis. Sports Med. 2020; 50(1):103-127.
[21] MORENO-VILLANUEVA M, KRAMER A, HAMMES T, et al. Influence of Acute Exercise on DNA Repair and PARP Activity before and after Irradiation in Lymphocytes from Trained and Untrained Individuals. Int J Mol Sci. 2019;20(12): 2999.
[22] MCGEE SL, HARGREAVES M. Epigenetics and Exercise. Trends Endocrinol Metab. 2019;30(9):636-645.
[23] FABRE O, INGERSLEV LR, GARDE C, et al. Exercise training alters the genomic response to acute exercise in human adipose tissue. Epigenomics. 2018;10(8): 1033-1050.
[24] WERNER CM, HECKSTEDEN A, MORSCH A, et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur Heart J. 2019;40(1):34-46.
[25] SIMPSON RJ, COSGROVE C, CHEE MM, et al. Senescent phenotypes and telomere lengths of peripheral blood T-cells mobilized by acute exercise in humans. Exerc Immunol Rev. 2010;16:40-55.
[26] LUDLOW AT, GRATIDÃO L, LUDLOW LW, et al. Acute exercise activates p38 MAPK and increases the expression of telomere-protective genes in cardiac muscle. Exp Physiol. 2017;102(4):397-410.
[27] MASTALOUDIS A, LEONARD SW, TRABER MG. Oxidative stress in athletes during extreme endurance exercise. Free Radic Biol Med. 2001;31(7):911-922.
[28] BORGHINI A, GIARDINI G, TONACCI A, et al. Chronic and acute effects of endurance training on telomere length. Mutagenesis. 2015;30(5):711-716.
[29] HAJIZADEH MALEKI B, TARTIBIAN B, MOOREN FC, et al. Low-to-moderate intensity aerobic exercise training modulates irritable bowel syndrome through antioxidative and inflammatory mechanisms in women: Results of a randomized controlled trial. Cytokine. 2018;102:18-25.
[30] ALGHADIR AH, GABR SA, AL-EISA ES. Effects of Moderate Aerobic Exercise on Cognitive Abilities and Redox State Biomarkers in Older Adults. Oxid Med Cell Longev. 2016;2016:2545168.
[31] RAHNAMA N, GAEINI AA, HAMEDINIA MR. Oxidative stress responses in physical education students during 8 weeks aerobic training. J Sports Med Phys Fitness. 2007;47(1):119-123.
[32] 柏茜茜,韩承刚,徐莹,等.肠易激综合征饮食干预策略研究进展[J].食品工业科技,2022,43(16):421-431.
[33] 李可欣,吕静,于冰,等.老年衰弱新兴标志物的研究进展及展望[J].中国全科医学,2021,24(36):4580-4586.
[34] ROWLANDS DS, PAGE RA, SUKALA WR, et al. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity. Physiol Genomics. 2014;46(20):747-765.
[35] BOYNE DJ, KING WD, BRENNER DR, et al. Aerobic exercise and DNA methylation in postmenopausal women: An ancillary analysis of the Alberta Physical Activity and Breast Cancer Prevention (ALPHA) Trial. PLoS One. 2018;13(6):e0198641.
[36] HAGMAN M, FRISTRUP B, MICHELIN R, et al. Football and team handball training postpone cellular aging in women. Sci Rep. 2021;11(1):11733.
[37] LAROCCA TJ, SEALS DR, PIERCE GL. Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity. Mech Ageing Dev. 2010;131(2):165-167.
[38] FRIEDENREICH CM, WANG Q, TING NS, et al. Effect of a 12-month exercise intervention on leukocyte telomere length: Results from the ALPHA Trial. Cancer Epidemiol. 2018;56:67-74.
[39] MASON C, RISQUES RA, XIAO L, et al. Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women. Obesity (Silver Spring). 2013;21(12):E549-E554.
[40] PUTERMAN E, WEISS J, LIN J, et al. Aerobic exercise lengthens telomeres and reduces stress in family caregivers: A randomized controlled trial - Curt Richter Award Paper 2018. Psychoneuroendocrinology. 2018;98:245-252.
[41] SCHELLNEGGER M, LIN AC, HAMMER N, et al. Physical Activity on Telomere Length as a Biomarker for Aging: A Systematic Review. Sports Med Open. 2022; 8(1):111.
[42] FLYNN MG, MCFARLIN BK, PHILLIPS MD, et al. Toll-like receptor 4 and CD14 mRNA expression are lower in resistive exercise-trained elderly women. J Appl Physiol (1985). 2003;95(5):1833-1842.
[43] FRANZKE B, HALPER B, HOFMANN M, et al. The impact of six months strength training, nutritional supplementation or cognitive training on DNA damage in institutionalised elderly. Mutagenesis. 2015;30(1):147-153.
[44] SOARES JP, SILVA AM, OLIVEIRA MM, et al. Effects of combined physical exercise training on DNA damage and repair capacity: role of oxidative stress changes. Age (Dordr). 2015;37(3):9799.
[45] DIMAURO I, SCALABRIN M, FANTINI C, et al. Resistance training and redox homeostasis: Correlation with age-associated genomic changes. Redox Biol. 2016;10:34-44.
[46] GARGALLO P, COLADO JC, JUESAS A, et al. The Effect of Moderate- Versus High-Intensity Resistance Training on Systemic Redox State and DNA Damage in Healthy Older Women. Biol Res Nurs. 2018;20(2):205-217.
[47] KADI F, PONSOT E, PIEHL-AULIN K, et al. The effects of regular strength training on telomere length in human skeletal muscle. Med Sci Sports Exerc. 2008;40(1):82-87.
[48] HAGSTROM AD, DENHAM J. The Effect of Resistance Training on Telomere Length in Women Recovering from Breast Cancer. J Funct Morphol Kinesiol. 2018;3(1):9.
[49] HAJIZADEH MALEKI B, TARTIBIAN B. High-intensity interval training modulates male factor infertility through anti-inflammatory and antioxidative mechanisms in infertile men: A randomized controlled trial. Cytokine. 2020;125:154861.
[50] HAJIZADEH MALEKI B, TARTIBIAN B, CHEHRAZI M. The effects of three different exercise modalities on markers of male reproduction in healthy subjects: a randomized controlled trial. Reproduction. 2017;153(2):157-174.
[51] HELLSTEN Y, APPLE FS, SJÖDIN B. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle. J Appl Physiol (1985). 1996;81(4):1484-1487.
[52] STREESE L, KHAN AW, DEISEROTH A, et al. High-intensity interval training modulates retinal microvascular phenotype and DNA methylation of p66Shc gene: a randomized controlled trial (EXAMIN AGE). Eur Heart J. 2020;41(15):1514-1519.
[53] DENHAM J, O’BRIEN BJ, MARQUES FZ, et al. Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. J Appl Physiol (1985). 2015;118(4):475-488.
[54] LAINE MK, ERIKSSON JG, KUJALA UM, et al. Effect of intensive exercise in early adult life on telomere length in later life in men. J Sports Sci Med. 2015;14(2):239-245.
[55] 耿雪,申晋波.不同运动方式干预2型糖尿病机制的研究进展[J].体育科研, 2018,39(2):91-99.
[56] 孙波,曾桂芳,林森,等.不同运动方式对T2DM大鼠形成过程中肾脏氧化应激及细胞凋亡表达的影响[J].华南国防医学杂志,2022,36(1):1-6.
[57] 田鹏,师捷璇,马娇,等.不同运动方式对青年期和老年期SAMP8小鼠胫骨前肌氧化应激影响的研究[J].中国康复医学杂志,2020,35(12):1416-1421.
[58] FISHER-WELLMAN K, BLOOMER RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med. 2009;8:1.
[59] TOMASETTI M, GAETANI S, MONACO F, et al. Epigenetic Regulation of miRNA Expression in Malignant Mesothelioma: miRNAs as Biomarkers of Early Diagnosis and Therapy. Front Oncol. 2019;9:1293.
[60] 袁乾坤.抗阻训练调控Mitofusin-2表达对老龄大鼠骨骼肌线粒体功能的影响[D].大连:辽宁师范大学,2015.
[61] 潘子君.一次性递增负荷运动激活骨骼肌UPRmt和线粒体自噬的研究[D].天津:天津体育学院,2021.
[62] 王蒙,张海峰.高强度间歇运动通过调控Nrf2/ARE和NF-κB信号通路调节高脂饮食诱导肥胖大鼠的氧化应激和炎症反应[J].基因组学与应用生物学, 2020,39(5):2324-2331.
[63] STEPHENS NA, BROUWERS B, EROSHKIN AM, et al. Exercise Response Variations in Skeletal Muscle PCr Recovery Rate and Insulin Sensitivity Relate to Muscle Epigenomic Profiles in Individuals With Type 2 Diabetes. Diabetes Care. 2018;41(10):2245-2254.
[64] LI J, WANG Z, LI C, et al. Impact of Exercise and Aging on Mitochondrial Homeostasis in Skeletal Muscle: Roles of ROS and Epigenetics. Cells. 2022;11(13):2086.
[65] 王艳霞.运动引起的血流剪切力信号调控内皮细胞功能的体外研究[D].大连:大连理工大学,2019.
[66] ZHANG J, RANE G, DAI X, et al. Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res Rev. 2016;25:55-69.
[67] KHAN S, CHUTURGOON AA, NAIDOO DP. Telomeres and atherosclerosis. Cardiovasc J Afr. 2012;23(10):563-571.
[68] 李俊,王少兵,许桂清,等.有氧运动和二甲双胍对2型糖尿病大鼠血管炎症的影响及机制[J].上海体育学院学报,2019,43(2):69-76,96.
[69] 刘波,陈祥和,杨康,等.骨代谢紊乱的表观遗传重编程与运动调控[J].中国组织工程研究,2021,25(20):3210-3218.
[70] CHILTON W, O’BRIEN B, CHARCHAR F. Telomeres, Aging and Exercise: Guilty by Association. Int J Mol Sci. 2017;18(12):2573. |