中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (1): 121-130.doi: 10.12307/2023.781
• 干细胞综述 stem cell review • 上一篇 下一篇
应春苗1,潘小龙1,刘飞祥2,陈 娜1,樊飞燕1,张运克1,2
收稿日期:
2022-11-29
接受日期:
2023-01-04
出版日期:
2024-01-08
发布日期:
2023-06-29
通讯作者:
张运克,博士,教授,主任医师,博士生导师,博士后合作导师,河南中医药大学,河南省郑州市 450046;河南中医药大学第一附属医院,河南省郑州市 450000
作者简介:
应春苗,女,1996年生,河南省漯河市人,汉族,河南中医药大学在读硕士,主要从事中医药防治神经内科疾病的研究。
基金资助:
Ying Chunmiao1, Pan Xiaolong1, Liu Feixiang2, Chen Na1, Fan Feiyan1, Zhang Yunke1, 2
Received:
2022-11-29
Accepted:
2023-01-04
Online:
2024-01-08
Published:
2023-06-29
Contact:
Zhang Yunke, MD, Professor, Chief physician, Doctoral supervisor, Post-doctoral cooperative supervisor, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China; The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
About author:
Ying Chunmiao, Master candidate, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
Supported by:
摘要:
文题释义:
益气活血开窍类中药及复方:气虚血瘀证是缺血性脑卒中的最主要证候,缺血性脑卒中导致脑内血脉淤堵,脑窍闭塞,益气修复既损之脑神,活血疏通淤塞之脉道,开窍以启闭醒神,益气活血开窍类中药及复方对于改善缺血性脑卒中引起的脑髓失养、神机失用等神经损伤具有重要意义。缺血性脑卒中急性期:指发病后2周以内,伴有神志障碍者可至1个月。在缺血性脑卒中急性期,神经修复存在一个相对较长的时间窗,在此时间窗内调节大脑重塑,对于改善受损的神经功能起到至关重要的作用。
结果与结论:①梳理了干细胞、缺血性脑卒中的定义及缺血性脑卒中急性期神经修复途径。②总结了益气活血开窍类中药及复方促进缺血性脑卒中急性期神经修复的作用机制,主要包括促进干细胞增殖、提高干细胞活力及存活率、促进干细胞归巢、诱导干细胞向神经元分化、抑制神经细胞凋亡、促进轴突再生、调控血管新生及重塑、提高神经营养因子水平及修复血脑屏障完整性。③通过现有的研究总结了益气活血开窍类中药及复方促进缺血性脑卒中急性期神经修复的相关因子及信号通路,如Nestin蛋白表达、DCX蛋白表达、脑源性神经营养因子、血管内皮生长因子及Wnt/β-catenin信号通路、Notch信号通路、PI3k/Akt信号通路、BDNF/TrkB信号通路和ERK/MAPK信号通路等,为今后缺血性脑卒中特效药物及新的临床治疗方法的研究提供相关参考。
https://orcid.org/0000-0002-2480-2441 (应春苗) ;https://orcid.org/0000-0003-1500-1535 (张运克)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
应春苗, 潘小龙, 刘飞祥, 陈 娜, 樊飞燕, 张运克. 益气活血开窍类中药及复方调控干细胞促进缺血性脑卒中急性期神经修复的作用[J]. 中国组织工程研究, 2024, 28(1): 121-130.
Ying Chunmiao, Pan Xiaolong, Liu Feixiang, Chen Na, Fan Feiyan, Zhang Yunke. Effect of traditional Chinese medicine and compounds for supplementing qi and activating blood circulation and inducing resuscitation on regulating stem cells to promote nerve repair of acute ischemic stroke[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(1): 121-130.
[1] HANKEY GJ. Stroke. Lancet. 2017;389(10069):641-654. [2] VIRANI SS, ALONSO A, BENJAMIN EJ, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020;141(9):e139-e596. [3] MARKUS TM, TSAI SY, BOLLNOW MR, et al. Recovery and brain reorganization after stroke in adult and aged rats. Ann Neurol. 2005;58(6): 950-953. [4] HERMANN DM, CHOPP M. Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol. 2012;11(4):369-380. [5] TANG H, LI Y, TANG W, et al. Endogenous Neural Stem Cell-induced Neurogenesis after Ischemic Stroke: Processes for Brain Repair and Perspectives. Transl Stroke Res. 2022 Sep 3. doi: 10.1007/s12975-022-01078-5. [6] 田超,袁梦晨,王晓峰,等.醒脑开窍药治疗中风病实验研究进展[J].中西医结合心脑血管病杂志,2018,16(15):2158-2161. [7] 范晓迪,张业昊,刘建勋.益气活血法在缺血性脑卒中后神经修复中的生物学基础研究进展[J].中国实验方剂学杂志,2022,28(15):216-222. [8] WANG M, LIU J X, YAO MJ, et al. Advances in research on pharmacological and neuroprotective effects of traditional Chinese medicine after cerebral ischemia. Zhongguo Zhong Yao Za Zhi. 2020;45(3):513-517. [9] TØNDER N, SØRENSEN T, ZIMMER J, et al. Neural grafting to ischemic lesions of the adult rat hippocampus. Exp Brain Res. 1989;74(3):512-526. [10] TOMAN NG, GRANDE AW, LOW WC. Neural Repair in Stroke. Cell Transplant. 2019;28(9-10):1123-1126. [11] KAWABORI M, SHICHINOHE H, KURODA S, et al. Clinical Trials of Stem Cell Therapy for Cerebral Ischemic Stroke. Int J Mol Sci. 2020;21(19):7380. [12] FAIZ M, SACHEWSKY N, GASCÓN S, et al. Adult Neural Stem Cells from the Subventricular Zone Give Rise to Reactive Astrocytes in the Cortex after Stroke. Cell Stem Cell. 2015;17(5):624-634. [13] IKHSAN M, PALUMBO A, ROSE D, et al. Neuronal Stem Cell and Drug Interactions: A Systematic Review and Meta-Analysis: Concise Review. Stem Cells Transl Med. 2019;8(11):1202-1211. [14] 谢仁敷,麻柔,廖军鲜,等.中药对体内扩散盒小鼠造血干细胞作用观察[J].中医杂志,1981(5):76-78. [15] 姜超,赵文树,孙申田.中医药对神经干细胞影响的研究概况[J].中医药信息,2006(5):14-15. [16] 樊飞燕,张运克.益气活血中药联合骨髓间充质干细胞促进缺血性脑卒中血管新生的作用与机制[J].中国组织工程研究,2021,25(13):2060-2069. [17] 孙作艳,岳少乾,唐巍巍,等.芳香开窍药对脑卒中保护作用的实验研究进展[J].天津中医药,2018,35(1):77-80. [18] ZHAO YH. Essential Role of Chinese Medicines in Mesenchymal Stem Cells Transplantation for Treatment of Ischemic Stroke. Chin J Integr Med. 2019;25(10): 723-727. [19] ERNST C, CHRISTIE BR. The putative neural stem cell marker, nestin, is expressed in heterogeneous cell types in the adult rat neocortex. Neuroscience. 2006; 138(1):183-188. [20] BERNAL A, ARRANZ L. Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci. 2018;75(12):2177-2195. [21] 郭筱琪.Nestin巢蛋白对神经干细胞和星形胶质细胞增殖分化的影响[D].苏州:苏州大学,2019. [22] LIU XS, CHOPP M, ZHANG XG, et al. Gene profiles and electrophysiology of doublecortin-expressing cells in the subventricular zone after ischemic stroke. J Cereb Blood Flow Metab. 2009;29(2):297-307. [23] CHEN X, JIANG H. Tau as a potential therapeutic target for ischemic stroke. Aging (Albany NY). 2019;11(24):12827-12843. [24] ALI T, KIM MO. Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSk3β pathway in the mouse hippocampus. J Pineal Res. 2015;59(1):47-59. [25] ROSENBLOOM AB, TARCZYŃSKI M, LAM N, et al. β-Catenin signaling dynamics regulate cell fate in differentiating neural stem cells. Proc Natl Acad Sci U S A. 2020;117(46):28828-28837. [26] SHRUSTER A, BEN-ZUR T, MELAMED E, et al. Wnt signaling enhances neurogenesis and improves neurological function after focal ischemic injury. PLoS One. 2012; 7(7):e40843. [27] 王先斌,汤红艳,李兴统,等.Wnt信号通路与神经发生、神经退行性变过程中的表述及作用[J].中国组织工程研究,2018,22(28):4587-4592. [28] 王凯,赵斌,王栓科,等.Notch信号转导通路在神经修复与再生中的激活效应[J]. 中国组织工程研究与临床康复,2010,14(23):4351-4354. [29] ZHANG Y, HE K, WANG F, et al. Notch-1 signaling regulates astrocytic proliferation and activation after hypoxia exposure. Neurosci Lett. 2015; 603:12-18. [30] ROESE-KOERNER B, STAPPERT L, BRÜSTLE O. Notch/Hes signaling and miR-9 engage in complex feedback interactions controlling neural progenitor cell proliferation and differentiation. Neurogenesis (Austin). 2017;4(1):e1313647. [31] WANG L, ZHOU K, FU Z, et al. Brain Development and Akt Signaling: the Crossroads of Signaling Pathway and Neurodevelopmental Diseases. J Mol Neurosci. 2017;61(3):379-384. [32] SONG G, OUYANG G, BAO S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005;9(1):59-71. [33] GUO W, NAGAPPAN G, LU B. Differential effects of transient and sustained activation of BDNF-TrkB signaling. Dev Neurobiol. 2018;78(7):647-659. [34] EYILETEN C, SHARIF L, WICIK Z, et al. The Relation of the Brain-Derived Neurotrophic Factor with MicroRNAs in Neurodegenerative Diseases and Ischemic Stroke. Mol Neurobiol. 2021;58(1):329-347. [35] ZHAO H, ALAM A, SAN CY, et al. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res. 2017;1665:1-21. [36] KOLCH W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 2000;351 Pt 2(Pt 2):289-305. [37] VANDAMME D, HERRERO A, AL-MULLA F, et al. Regulation of the MAPK pathway by raf kinase inhibitory protein. Crit Rev Oncog. 2014;19(6):405-415. [38] LIU Y, LU JB, CHEN Q, et al. Involvement of MAPK/ERK kinase-ERK pathway in exogenous bFGF-induced Egr-1 binding activity enhancement in anoxia-reoxygenation injured astrocytes. Neurosci Bull. 2007;23(4):221-228. [39] GUO YJ, PAN WW, LIU SB, et al. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997-2007. [40] TEERTAM SK, PRAKASH BABU P. Differential role of SIRT1/MAPK pathway during cerebral ischemia in rats and humans. Sci Rep. 2021;11(1):6339. [41] O’NEILL E, KOLCH W. Conferring specificity on the ubiquitous Raf/MEK signalling pathway. Br J Cancer. 2004;90(2):283-288. [42] XING L, LARSEN RS, BJORKLUND GR, et al. Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex. Elife. 2016;5:e11123. [43] ROUX PP, BLENIS J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68(2):320-344. [44] GALLUZZI L, KEPP O, KROEMER G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol. 2012;13(12):780-788. [45] HUANG PJ, KUO CC, LEE HC, et al. Transferring Xenogenic Mitochondria Provides Neural Protection Against Ischemic Stress in Ischemic Rat Brains. Cell Transplant. 2016;25(5):913-927. [46] HAYAKAWA K, ESPOSITO E, WANG X, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551-555. [47] WANG Y, DENG Y, ZHOU GQ. SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res. 2008;1195:104-112. [48] SHYU WC, LIN SZ, YEN PS, et al. Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J Pharmacol Exp Ther. 2008;324(2):834-849. [49] LE BELLE JE, OROZCO NM, PAUCAR AA, et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell. 2011;8(1): 59-71. [50] 闫海清,贵永堃,任瑞芳,等.沉默信息调节因子2相关酶1对急性脑梗死大鼠的神经保护作用及其机制[J].中华实验外科杂志,2020, 37(2):261-262. [51] BARTOLI-LEONARD F, WILKINSON FL, LANGFORD-SMITH A, et al. The Interplay of SIRT1 and Wnt Signaling in Vascular Calcification. Front Cardiovasc Med. 2018; 5:183. [52] ZHANG TJ, HANG J, WEN DX, et al. Hippocampus bcl-2 and bax expression and neuronal apoptosis after moderate hypothermic cardiopulmonary bypass in rats. Anesth Analg. 2006;102(4):1018-1025. [53] KURANAGA E. Beyond apoptosis: caspase regulatory mechanisms and functions in vivo. Genes Cells. 2012;17(2):83-97. [54] YI X, YIN XM, DONG Z. Inhibition of Bid-induced apoptosis by Bcl-2. tBid insertion, Bax translocation, and Bax/Bak oligomerization suppressed. J Biol Chem. 2003; 278(19):16992-16999. [55] HINMAN JD. The back and forth of axonal injury and repair after stroke. Curr Opin Neurol. 2014;27(6):615-623. [56] KIMURA T, HORIKOSHI Y, KURIYAGAWA C, et al. Rho/ROCK Pathway and Noncoding RNAs: Implications in Ischemic Stroke and Spinal Cord Injury. Int J Mol Sci. 2021;22(21):11573. [57] LIU J, GAO HY, WANG XF. The role of the Rho/ROCK signaling pathway in inhibiting axonal regeneration in the central nervous system. Neural Regen Res. 2015;10(11):1892-1896. [58] GOVEK EE, WU Z, ACEHAN D, et al. Cdc42 Regulates Neuronal Polarity during Cerebellar Axon Formation and Glial-Guided Migration. iScience. 2018;1:35-48. [59] RAPPAZ B, LAI WSK, CORREIA JP, et al. FLIM FRET Visualization of Cdc42 Activation by Netrin-1 in Embryonic Spinal Commissural Neuron Growth Cones. PLoS One. 2016;11(8):e159405. [60] SHI X, DOYCHEVA DM, XU L, et al. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats. Neurobiol Dis. 2016;95: 111-121. [61] MELINCOVICI CS, BOŞCA AB, ŞUŞMAN S, et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455-467. [62] WANG Z, TAO J, ZHANG Q, et al. Effect of oxygen and glucose deprivation on VEGF and its receptors in microvascular endothelial cells co-cultured with mast cells. Cell Biol Int. 2015;39(9):1016-1025. [63] SAHARINEN P, BRY M, ALITALO K. How do angiopoietins Tie in with vascular endothelial growth factors? Curr Opin Hematol. 2010;17(3):198-205. [64] JEONG CH, KIM SM, LIM JY, et al. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. Biomed Res Int. 2014;2014:129145. [65] WANG F, TANG H, ZHU J, et al. Transplanting Mesenchymal Stem Cells for Treatment of Ischemic Stroke. Cell Transplant. 2018;27(12):1825-1834. [66] KEANEY J, CAMPBELL M. The dynamic blood-brain barrier. FEBS J. 2015; 282(21): 4067-4079. [67] BAUER H, TRAWEGER A. Tight Junctions of the Blood-Brain Barrier-A Molecular Gatekeeper. CNS Neurol Disord Drug Targets. 2016;15(9):1016-1029. [68] STAMATOVIC SM, JOHNSON AM, KEEP RF, et al. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers. 2016;4(1):e1154641. [69] GREENE C, HANLEY N, CAMPBELL M. Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS. 2019;16(1):3. [70] GREENE C, CAMPBELL M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers. 2016;4(1): e1138017. [71] SUN L, ZHANG H, WANG W, et al. Astragaloside IV Exerts Cognitive Benefits and Promotes Hippocampal Neurogenesis in Stroke Mice by Downregulating Interleukin-17 Expression via Wnt Pathway. Front Pharmacol. 2020;11:421. [72] SUN L, HAN R, GUO F, et al. Antagonistic effects of IL-17 and Astragaloside IV on cortical neurogenesis and cognitive behavior after stroke in adult mice through Akt/GSK-3β pathway. Cell Death Discov. 2020;6:74. [73] NI GX, LIANG C, WANG J, et al. Astragaloside IV improves neurobehavior and promotes hippocampal neurogenesis in MCAO rats though BDNF-TrkB signaling pathway. Biomed Pharmacother. 2020;130:110353. [74] CHEN X, WU H, CHEN H, et al. Astragaloside VI Promotes Neural Stem Cell Proliferation and Enhances Neurological Function Recovery in Transient Cerebral Ischemic Injury via Activating EGFR/MAPK Signaling Cascades. Mol Neurobiol. 2019;56(4):3053-3067. [75] ZHAO YH, LIU NW, KE CC, et al. Combined treatment of sodium ferulate, n-butylidenephthalide, and ADSCs rehabilitates neurovascular unit in rats after photothrombotic stroke. J Cell Mol Med. 2019;23(1):126-142. [76] LI S, LU Y, DING D, et al. Fibroblast growth factor 2 contributes to the effect of salidroside on dendritic and synaptic plasticity after cerebral ischemia/reperfusion injury. Aging (Albany NY). 2020;12(11):10951-10968. [77] NI XC, WANG HF, CAI YY, et al. Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke. Redox Biol. 2022;54:102363. [78] LI XY, LIANG J, TANG YB, et al. Ginsenoside Rd prevents glutamate-induced apoptosis in rat cortical neurons. Clin Exp Pharmacol Physiol. 2010;37(2):199-204. [79] ZONG W, GOUDA M, CAI E, et al. The Antioxidant Phytochemical Schisandrin A Promotes Neural Cell Proliferation and Differentiation after Ischemic Brain Injury. Molecules. 2021;26(24):7466. [80] XIE W, ZHU T, ZHOU P, et al. Notoginseng Leaf Triterpenes Ameliorates OGD/R-Induced Neuronal Injury via SIRT1/2/3-Foxo3a-MnSOD/PGC-1α Signaling Pathways Mediated by the NAMPT-NAD Pathway. Oxid Med Cell Longev. 2020; 2020:7308386. [81] WEI ZZ, CHEN D, LIU LP, et al. Enhanced Neurogenesis and Collaterogenesis by Sodium Danshensu Treatment After Focal Cerebral Ischemia in Mice. Cell Transplant. 2018;27(4):622-636. [82] ZHANG S, KONG D W, MA GD, et al. Long-term administration of salvianolic acid A promotes endogenous neurogenesis in ischemic stroke rats through activating Wnt3a/GSK3β/β-catenin signaling pathway. Acta Pharmacol Sin. 2022;43(9):2212-2225. [83] WANG J, NI G, LIU Y, et al. Tanshinone IIA Promotes Axonal Regeneration in Rats with Focal Cerebral Ischemia Through the Inhibition of Nogo-A/NgR1/RhoA/ROCKII/MLC Signaling. Drug Des Devel Ther. 2020;14:2775-2787. [84] ZHU T, WANG L, XIE W, et al. Notoginsenoside R1 Improves Cerebral Ischemia/Reperfusion Injury by Promoting Neurogenesis via the BDNF/Akt/CREB Pathway. Front Pharmacol. 2021;12:615998. [85] YANG X, ZHENG T, HONG H, et al. Neuroprotective effects of Ginkgo biloba extract and Ginkgolide B against oxygen-glucose deprivation/reoxygenation and glucose injury in a new in vitro multicellular network model. Front Med. 2018;12(3):307-318. [86] LIN L, CHU L, REN C, et al. Enhanced Migration of Bone Marrow-Derived Mesenchymal Stem Cells with Tetramethylpyrazine and Its Synergistic Effect on Angiogenesis and Neurogenesis After Cerebral Ischemia in Rats. Stem Cells Dev. 2019;28(13):871-881. [87] WU Q, LIU J, MAO Z, et al. Ligustilide attenuates ischemic stroke injury by promoting Drp1-mediated mitochondrial fission via activation of AMPK. Phytomedicine. 2022;95:153884. [88] ZHOU Z, DUN L, WEI B, et al. Musk Ketone Induces Neural Stem Cell Proliferation and Differentiation in Cerebral Ischemia via Activation of the PI3K/Akt Signaling Pathway. Neuroscience. 2020;435:1-9. [89] 乔利军,向娇娇,崔志忠,等.麝香酮对脑缺血再灌注损伤大鼠神经再生作用的研究[J].中医药学报,2022(11):18-24. [90] LEE HJ, AHN SM, PAK ME, et al. Positive effects of α-asarone on transplanted neural progenitor cells in a murine model of ischemic stroke. Phytomedicine. 2018;51:151-161. [91] KIM R, LEE S, LEE CY, et al. Salvia miltiorrhiza enhances the survival of mesenchymal stem cells under ischemic conditions. J Pharm Pharmacol. 2018; 70(9):1228-1241. [92] YU B, YAO Y, ZHANG X, et al. Synergic Neuroprotection Between Ligusticum Chuanxiong Hort and Borneol Against Ischemic Stroke by Neurogenesis via Modulating Reactive Astrogliosis and Maintaining the Blood-Brain Barrier. Front Pharmacol. 2021;12:666790. [93] ZAMANIAN JL, XU L, FOO LC, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32(18):6391-6410. [94] DU X, LI C, ZHANG S, et al. Exploring the pharmacological mechanism of calculus bovis in cerebral ischaemic stroke using a network pharmacology approach. J Ethnopharmacol. 2022;284:114507. [95] LUO C, WU Y, CHEN X, et al. Chemical Composition, Protective Effects, and Mechanisms of Volatile Oil from Fructus Gleditsiae Abnormalis with Nasal Administration against Ischemic Injury in HFD and MCAO-Induced Rats. Evid Based Complement Alternat Med. 2021;2021:8880996. [96] XIE Q, MA R, GUO X, et al. Benzoinum from Styrax tonkinensis (Pierre) Craib ex Hart exerts a NVU protective effect by inhibiting cell apoptosis in cerebral ischaemia rats. J Ethnopharmacol. 2021;265:113355. [97] CHEN H, REN M, LI H, et al. Neuroprotection of benzoinum in cerebral ischemia model rats via the ACE-AngI-VEGF pathway. Life Sci. 2020;260: 118418. [98] 张运克,高峰,张丹,等.补阳还五汤联合骨髓间充质干细胞移植对脑缺血再灌注大鼠脑组织NSE和GFAP表达的影响[J].中医杂志,2013, 54(23):2043-2045. [99] 张运克.补阳还五汤及拆方影响脑缺血再灌注大鼠细胞凋亡与Bcl-2、Bax蛋白的表达(英文)[J].中国临床康复,2006,10(43):196-199. [100] ZHANG YK, HAN XY, CHE ZY. Effects of buyang huanwu tang combined with bone marrow mesenchymal stem cell transplantation on the expression of VEGF and Ki-67 in the brain tissue of the cerebral ischemia-reperfusion model rat. J Tradit Chin Med. 2010;30(4):278-282. [101] 张运克,车志英,李可.补阳还五汤联合骨髓间充质干细胞移植脑缺血再灌注大鼠脑组织紧密连接蛋白的表达[J].中国组织工程研究,2019, 23(1):55-60. [102] 冯静静,刘昱言,刘轲,等.脑脉通联合骨髓间充质干细胞移植对脑缺血再灌注大鼠巢蛋白表达的影响[J].辽宁中医杂志,2021,48(11):181-185. [103] 张运克,傅小欧,李可.麝香黄芪复方滴丸对缺血再灌注损伤大鼠脑组织紧密连接蛋白表达影响[J]. 中华中医药学刊,2022,40(3):1-5. [104] 李梦頔,李一兴,张运克.麝香黄芪复方滴丸对体外缺血缺氧血脑屏障通透性及相关调节蛋白的影响[J].中华中医药学刊,2022,40(1):80-84. [105] FU DL, LI JH, SHI YH, et al. Sanhua Decoction, a Classic Herbal Prescription, Exerts Neuroprotection Through Regulating Phosphorylated Tau Level and Promoting Adult Endogenous Neurogenesis After Cerebral Ischemia/Reperfusion Injury. Front Physiol. 2020;11:57. [106] 赵克非,李斌,张艳滨,等.健脾益智胶囊对大脑中动脉栓塞大鼠海马Hes1表达的影响[J].广西中医药,2018,41(3):70-73. [107] 冯珂,纪立金.健脾益智胶囊对大脑中动脉栓塞大鼠海马神经干细胞增殖及Notch1、Jagged1表达的影响[J].中华中医药杂志,2013,28(4): 921-924. [108] 冯珂,纪立金.健脾益智胶囊对大脑中动脉栓塞大鼠海马BDNF、EGF、bFGF表达的影响[J].中华中医药杂志,2017,32(6):2686-2688. [109] 陈小玉.白脉散有效成分组调控神经干细胞增殖的分子机制研究[D].北京:中央民族大学,2013. [110] 孟庆萍,胡建鹏,王键,等.两种中药复方对局灶性脑缺血再灌注大鼠脑组织Hes-1、Hes-5表达的动态影响[J].安徽中医学院学报,2009, 28(5):52-55. [111] DU Q, DENG R, LI W, et al. Baoyuan Capsule promotes neurogenesis and neurological functional recovery through improving mitochondrial function and modulating PI3K/Akt signaling pathway. Phytomedicine. 2021;93:153795. [112] 寿雅琨.基于BDNF/TrkB/CREB信号通路探讨芪仙通络方对MCAO大鼠突触重塑的影响及作用机制[D].长沙:湖南中医药大学,2020. [113] 林秀慧,吴志敏,王逸如,等.芪仙通络方对脑梗死恢复期患者神经功能恢复的影响及机制[J].中国实验方剂学杂志,2021,27(23):118-124. [114] 林秀慧,周春吉,马珂,等.芪仙通络方对脑缺血大鼠内源性神经干细胞再生的影响及机制[J].中国实验方剂学杂志,2017,23(24):141-147. [115] 荆莉,唐丽,李敏,等.脑疏宁对缺血性脑卒中神经再生作用的研究[J].中央民族大学学报(自然科学版),2020,29(3):71-79. [116] 鲁启洪.银杏活脑胶囊对大鼠缺血性脑卒中微血管增殖和神经干细胞再生的影响[J].湖北民族学院学报(医学版),2009,26(4):7-9. [117] 胡国恒,刘侃,尹美美,等.肾脑复元汤对MCAO大鼠脑保护作用及cyt-C,Caspase-9,Caspase-3的影响[J].中国中医急症,2017,26(3):384-386. [118] 胡国恒,侯小花,李映辰,等.肾脑复元汤联合人脐带间充质干细胞移植对MCAO大鼠神经功能恢复及VEGF表达的影响[J].中国中医急症, 2016,25(1):4-7. [119] 李映辰,王瑾茜,刘侃,等.肾脑复元汤联合人脐带间充质干细胞移植对脑缺血再灌注大鼠神经营养因子表达的影响[J].中草药,2016, 47(5):781-787. [120] VANDAMME D, HERRERO A, AL-MULLAF, et al. Regulation of the MAPK pathway by raf kinase inhibitory protein. Crit Rev Oncog. 2014;19(6):405-415. [121] SIMONYAN L, RENAULT TT, NOVAIS MJ, et al. Regulation of Bax/mitochondria interaction by AKT. FEBS Lett. 2016;590(1):13-21. [122] TRAZZI S, STEGER M, MITRUGNO VM, et al. CB1 cannabinoid receptors increase neuronal precursor proliferation through AKT/glycogen synthase kinase-3beta/beta-catenin signaling. J Biol Chem. 2010;285(13):10098-10109. [123] LI XT, LIANG Z, WANG TT, et al. Brain-derived Neurotrophic Factor Promotes Growth of Neurons and Neural Stem Cells Possibly by Triggering the Phosphoinositide 3-Kinase/ AKT/Glycogen Synthase Kinase-3β/β-catenin Pathway. CNS Neurol Disord Drug Targets. 2017;16(7):828-836. [124] FEI Y, ZHAO B, ZHU J, et al. XQ-1H promotes cerebral angiogenesis via activating PI3K/Akt/GSK3β/β-catenin/VEGF signal in mice exposed to cerebral ischemic injury. Life Sci. 2021;272:119234. |
[1] | 艾芳芳, 肖红燕, 汪 芳, 朱永朝, 马丽君. 枸杞多糖联合奥沙利铂可逆转结肠癌干细胞的耐药[J]. 中国组织工程研究, 2024, 28(1): 74-79. |
[2] | 范永晶, 王 姝, 金武龙. 颌骨来源骨髓间充质干细胞成骨分化的特点、优势与应用[J]. 中国组织工程研究, 2024, 28(1): 100-106. |
[3] | 黄勇彬, 王 涛, 娄园一, 庞景群, 陈光华. 间充质干细胞促进肌肉组织修复的应用前景[J]. 中国组织工程研究, 2024, 28(1): 107-112. |
[4] | 杨 婷, 丁智斌, 江 楠, 韩红霞, 侯苗苗, 马存根, 宋丽娟, 李新毅. 星形胶质细胞调节缺血性脑卒中的胶质瘢痕形成[J]. 中国组织工程研究, 2024, 28(1): 131-138. |
[5] | 马岁录, 何志军, 刘 涛, 李 岩, 何元旭, 何 波, 王威威, 魏晓涛. 中药单体调控“细胞自噬”防治皮瓣坏死[J]. 中国组织工程研究, 2024, 28(1): 153-158. |
[6] | 彭英楠, 边志磊, 张素平, 李 丽, 曹伟杰, 万鼎铭. CD34+细胞数对单倍体造血干细胞移植治疗恶性血液病的影响[J]. 中国组织工程研究, 2024, 28(1): 1-6. |
[7] | 韦雨柔, 田佳庆, 何宪顺, 詹芝玮, 魏腾飞, 林天烨, 何 伟, 魏秋实. 慢病毒沉默Piezo1蛋白与人骨髓间充质干细胞成骨分化及TAZ的表达[J]. 中国组织工程研究, 2024, 28(1): 12-19. |
[8] | 王宪峰, 王 锟, 孙 晗, 孙晓亮, 言力韬. 脐带间充质干细胞外泌体LncRNA H19修复软骨损伤的机制[J]. 中国组织工程研究, 2024, 28(1): 20-25. |
[9] | 张元澍, 何 旭, 薛 源, 金叶盛, 汪 凯, 施 勤, 芮永军. 鸢尾素缓解棕榈酸对骨髓间充质干细胞的成骨抑制[J]. 中国组织工程研究, 2024, 28(1): 26-31. |
[10] | 何莉君, 漆小娟. 脂肪间充质干细胞过表达骨形态发生蛋白2促进骨质疏松大鼠牙槽骨缺损修复[J]. 中国组织工程研究, 2024, 28(1): 32-37. |
[11] | 周明华, 胡晓宇. LncRNA SNHG4调控牙周膜干细胞成骨分化过程中的miR-152-3p[J]. 中国组织工程研究, 2024, 28(1): 38-43. |
[12] | 郑嵘炅, 邓泽润, 韩 丹, 孙丽华. 骨髓间充质干细胞来源外泌体调节大鼠肝细胞凋亡的机制[J]. 中国组织工程研究, 2024, 28(1): 44-49. |
[13] | 郑明魁, 薛晨晖, 关晓明, 马 迅. 人脐带间充质干细胞来源外泌体降低脊髓损伤后血脊髓屏障的通透性[J]. 中国组织工程研究, 2024, 28(1): 50-55. |
[14] | 孙 菁, 廖 健, 孙江龄, 程 萍, 冯红超. 重组人生长激素促进人牙髓干细胞的成骨分化[J]. 中国组织工程研究, 2024, 28(1): 56-61. |
[15] | 何宛俞, 程乐平. 干细胞移植修复脊髓损伤的策略与进展[J]. 中国组织工程研究, 2023, 27(在线): 1-7. |
1.1.7 检索策略 以PubMed数据库检索策略为例,见图1。
1.3 质量评估及数据的提取 经资料收集者互相评估纳入文献的有效性和适用性,通过阅读文题和摘要进行初步筛选;排除中英文文献重复性研究,以及内容不相关的文献,最后纳入中英文文献共124篇进行综述,其中中文文献30篇来源于中国知网,英文文献94篇来源于PubMed数据库。文献筛选流程,见图2。
#br#
文题释义:
益气活血开窍类中药及复方:气虚血瘀证是缺血性脑卒中的最主要证候,缺血性脑卒中导致脑内血脉淤堵,脑窍闭塞,益气修复既损之脑神,活血疏通淤塞之脉道,开窍以启闭醒神,益气活血开窍类中药及复方对于改善缺血性脑卒中引起的脑髓失养、神机失用等神经损伤具有重要意义。缺血性脑卒中急性期:指发病后2周以内,伴有神志障碍者可至1个月。在缺血性脑卒中急性期,神经修复存在一个相对较长的时间窗,在此时间窗内调节大脑重塑,对于改善受损的神经功能起到至关重要的作用。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
近年研究发现益气活血开窍类中药及复方可显著促进缺血性脑卒中急性期神经修复,益气活血开窍类中药及复方通过调控内源性神经发生及促进外源性干细胞在体内的存活、迁移、增殖、分化来改善缺血性脑卒中急性期神经损伤。本文综述了益气活血开窍类中药及复方调控干细胞促进缺血性脑卒中急性期神经修复的相关因子及信号通路,以期为缺血性脑卒中新药研发及新的治疗方法提供依据与参考。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||