中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (1): 113-120.doi: 10.12307/2023.921

• 干细胞综述 stem cell review • 上一篇    下一篇

类装配体的构建方法及应用

刘春磊1,2,3,姚  茜1,3,韦正波2,3,谢  莹1,3   

  1. 1广西医科大学生命科学研究院,广西壮族自治区南宁市   530021;2广西医科大学附属肿瘤医院,广西壮族自治区南宁市   530021;3广西区域性高发肿瘤早期防治研究重点实验室,广西壮族自治区南宁市   530021
  • 收稿日期:2023-01-06 接受日期:2023-02-18 出版日期:2024-01-08 发布日期:2023-06-29
  • 通讯作者: 谢莹,博士,教授,广西医科大学生命科学研究院,广西壮族自治区南宁市 530021;广西区域性高发肿瘤早期防治研究重点实验室,广西壮族自治区南宁市 530021
  • 作者简介:刘春磊,男,1991年生,河南省周口市人,汉族,广西医科大学在读硕士,主要从事类器官相关研究。 姚茜,女,1989年生,湖北省人,蒙古族,2019年广西医科大学毕业,硕士,主要从事类器官相关研究。
  • 基金资助:
    国家自然科学基金项目 (82160386),项目负责人:谢莹;广西自然科学基金面上项目(2021GXNSFAA075042),项目负责人:谢莹

Construction methods and application of assembloids

Liu Chunlei1, 2, 3, Yao Xi1, 3, Wei Zhengbo2, 3, Xie Ying1, 3   

  1. 1Life Science Institute, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China; 2Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China; 3Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning 530021, Guangxi Zhuang Autonomous Region, China
  • Received:2023-01-06 Accepted:2023-02-18 Online:2024-01-08 Published:2023-06-29
  • Contact: Xie Ying, PhD, Professor, Life Science Institute, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning 530021, Guangxi Zhuang Autonomous Region, China
  • About author:Liu Chunlei, Master candidate, Life Science Institute, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning 530021, Guangxi Zhuang Autonomous Region, China Yao Xi, Master, Life Science Institute, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning 530021, Guangxi Zhuang Autonomous Region, China
  • Supported by:
    the National Natural Science Foundation of China, No. 82160386 (to XY); General Project of Guangxi Natural Science Foundation of China, No. 2021GXNSFAA075042 (to XY)

摘要:


文题释义:

类装配体:是由多种类型细胞组成、具有空间结构的类器官,亦称为类组装体,它可比传统类器官更好地复制体内微环境、保持细胞的遗传物质和组织特点。
自体组装:是指由干细胞增殖聚集,并被诱导分化形成含有多种细胞的类装配体的过程。
直接组装:指在体外直接将多种分化成熟的细胞按一定比例共培养,组装为类装配体的过程。
混合组装:指由干细胞形成的类器官或细胞球与分化成熟的不同细胞共培养,形成类装配体的过程。


背景:近年来,许多研究证实类装配体可弥补类器官无法完全重现细胞与细胞、细胞与基质间的互作关系的缺点,但处于发展初期的类装配体构建方式种类繁多,更无统一标准。

目的:综述目前类装配体的构建方法、应用和优缺点,为促进体外细胞模型的发展和完善提供指导。
方法:以“assembloids,organoids,tumor microenvironment,organoids AND assemble,organoids AND microenvironment”为英文检索词,以“类装配体、类器官、类组装体、肿瘤微环境、类器官重组、多细胞模型”为中文检索词,检索PubMed、中国知网及万方数据库,在排除无关文章及去重后筛选出94篇文章进行综述。 

结果与结论:①根据细胞来源的不同,可将类装配体的构建方法分为自体组装、直接组装及混合组装3种;根据细胞培养方式的差异,又可分为悬浮培养法、“基质”培养法、器官芯片培养法和3D生物打印法。②自体组装过程涵盖细胞和组织的发育等早期过程,因此,在器官发育和发育障碍等领域有广阔的前景,而分化成熟细胞的功能相对较完善,由它们直接组装成的类装配体在功能障碍及细胞损伤性疾病的研究中更具潜力;自体组装或在器官移植方面更胜一筹,直接组装将更适用于组织损伤的修复,混合组装综合了前两者的优势,多用于探索微环境中细胞的生理和病理机制以及药物筛选等领域。③虽然不同的类装配体各具优势,但都面临脉管系统不完善的难题;每种类装配体构建方法也存在各自的局限性,如自体组装形成的类装配体中细胞分化程度与体内的差异,直接组装模型的细胞种类固定、无法完全反映复杂的体内微环境等均是亟待解决的难题。④将来随着类装配体培养技术的不断完善,研究者们可以在体外组装出具有更复杂组织结构的仿生类器官,为研究人类组织和器官生理及病理过程提供无限趋近真实的模型。

https://orcid.org/0000-0002-4587-9640 (刘春磊);https://orcid.org/0000-0003-0226-9962 (姚茜) ;
https://orcid.org/0000-0002-8856-4243 (谢莹)

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 类装配体, 类器官, 自体组装, 直接组装, 混合组装, 悬浮培养, 基质培养, 器官芯片, 3D生物打印, 肿瘤微环境

Abstract: BACKGROUND: In recent years, many studies have confirmed that assembloids can make up for the shortcomings of organoids, which cannot fully reproduce the interaction between cell and cell and between cell and matrix. Since the assembloids construction methods are in the early stage of development, there is no unified standard. 
OBJECTIVE: To review the current construction methods, applications, advantages, and disadvantages of assembloids, guide the development and improvement of vitro cell models.
METHODS: PubMed, CNKI, and WanFang databases were searched with English search terms “assembloids, organoids, tumor microenvironment, organoids AND assemble, organoids AND microenvironment” and Chinese search terms “assembloids, organoids, tumor microenvironment, organoid reorganization, multicellular model”. Totally 94 articles were screened out for review after excluding irrelevant articles and deduplication. 
RESULTS AND CONCLUSION: (1) According to the different sources of cells, the construction of assembloids can be divided into three methods: self-assembly, direct-assembly, and mixed-assembly. According to the differences of cell culture methods, it can be divided into suspension culture method, matrix culture method, organ chip culture method, and 3D bio-printing. (2) The process of self-assembly covers early stages of cell and tissue development, so it has broad prospects in the fields of organ development and developmental disorders. The function of differentiated mature cells is relatively perfect, and the assembloids directly assembled by them have more potential in the study of functional disorders and cell-damaging diseases. Self-assembly may be better in organ transplantation, and direct-assembly will be more suitable for the repair of tissue damage. Mixed-assembly combines the advantages of the former two and is mostly used to explore the physiological and pathological mechanisms of cells in the microenvironment, as well as drug screening. (3) Although different assembloids have their own advantages, they all face the problem of imperfect vasculature system, then, each method has its own limitations, for example, the degree of cell differentiation in self-assembly assembloids may still be different from that in vivo, and the fixed cell types in direct-assembly models cannot simulate complex microenvironments in vivo. These are urgent problems to be solved. (4) In the future, with the continuous improvement of assembloids culture technology, scientists can assemble biomimetic organoids with more complex tissues in vitro, providing infinitely realistic models for the study of physiological and pathological processes of human tissue and organ.

Key words: assembloids, organoids, self-assembly, direct-assembly, mixed-assembly, suspension culture, matrix culture, organ chip, 3D printing, tumor microenvironment

中图分类号: