中国组织工程研究 ›› 2021, Vol. 25 ›› Issue (34): 5445-5452.doi: 10.12307/2021.237

• 组织工程软骨材料Tissue-engineered cartilage • 上一篇    下一篇

3D生物打印负载转化生长因子β3的软骨复合支架

杨  振1,2,李  浩1,2,付力伟1,2,高仓健1,2,姜双鹏2,王福鑫2,苑志国2,孙志强1,2,查康康1,2,田广招1,2,曹福洋2,眭  翔2,刘舒云2,郭全义2   

  1. 1南开大学医学院,天津市    300071;2解放军总医院第一医学中心骨科研究所,骨科再生医学北京市重点实验室,全军骨科战创伤重点实验室,北京市   100853
  • 收稿日期:2020-06-28 修回日期:2020-07-03 接受日期:2020-08-04 出版日期:2021-12-08 发布日期:2021-07-26
  • 通讯作者: 郭全义,教授,解放军总医院第一医学中心骨科研究所,骨科再生医学北京市重点实验室,全军骨科战创伤重点实验室,北京市 100853
  • 作者简介:杨振,男,1993 年生,河南省商丘市人,汉族,南开大学医学院在读硕士,主要从事软骨、半月板组织工程相关方向的研究
  • 基金资助:
    国家重点研发计划课题(2019YFA0110600),项目负责人:郭全义;国家自然科学基金(81772319),项目负责人:郭全义

Cartilage composite scaffold loaded with transforming growth factor beta 3 using three-dimensional bioprinting

Yang Zhen1, 2, Li Hao1, 2, Fu Liwei1, 2, Gao Cangjian1, 2, Jiang Shuangpeng2, Wang Fuxin2, Yuan Zhiguo2, Sun Zhiqiang1, 2, Zha Kangkang1, 2, Tian Guangzhao1, 2, Cao Fuyang2, Sui Xiang2, Liu Shuyun2, Guo Quanyi2   

  1. 1Medical College of Nankai University, Tianjin 300071, China; 2Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing 100853, China
  • Received:2020-06-28 Revised:2020-07-03 Accepted:2020-08-04 Online:2021-12-08 Published:2021-07-26
  • Contact: Guo Quanyi, Professor, Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing 100853, China
  • About author:Yang Zhen, Master candidate, Medical College of Nankai University, Tianjin 300071, China; Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing 100853, China
  • Supported by:
    the National Key Research and Development Plan Project, No. 2019YFA0110600 (to GQY); the National Natural Science Foundation of China, No. 81772319 (to GQY)

摘要:

文题释义:
3D生物打印:通过精准控制生物材料、种子细胞、生长因子在整体3D结构中的位置、组合与互相作用,使之具有生物活性,并能实现与目标组织或生物器官接近相同,甚至更优越的功能。
转化生长因子β3:作为关节软骨组织形成的重要调节因子,可以促进干细胞迁移和成软骨分化,增强软骨损伤的修复,是一种理想的干细胞招募和促分化因子。
背景:通过募集内源性干细胞原位再生软骨损伤的治疗策略,是未来软骨组织工程研究的新方向。
目的:构建既能募集干细胞又能促进其黏附和增殖,且有利于新生组织成熟的组织工程软骨复合支架。
方法:将脱细胞软骨细胞外基质(extracellular matrix,ECM)与甲基丙烯酸酯化明胶(methacrylated gelatin,GelMA)混合配制光敏性生物墨水,利用3D生物打印技术分别制备单纯聚己内酯[poly(Ɛ-caprolactone),PCL]支架、PCL/GelMA/ECM支架。将转化生长因子β3(transforming growth factor β3,TGF-β3)负载于生物墨水中制备PCL/GelMA/ECM/TGF-β3支架,检测其缓释性能。从形态学、组织学、生物化学、生物力学等角度评价PCL/GelMA/ECM支架的物理化学性质。利用CCK-8法检测PCL/GelMA/ECM支架的细胞毒性。将脂肪间充质干细胞接种于PCL/GelMA/ECM支架上,1,4,7 d后,共聚焦显微镜下观察细胞活性,扫描电镜观察细胞黏附。将PCL/GelMA/ECM支架植入SD大鼠皮下,组织学观察炎性细胞浸润与支架降解。利用Transwell小室实验检测PCL/GelMA/ECM支架、PCL/GelMA/ECM/TGF-β3支架对脂肪间充质干细胞迁移的影响,以单独培养的细胞为阴性对照。
结果与结论:①PCL/GelMA/ECM支架呈现三维立体多孔网状结构,无细胞成分,含有Ⅱ型胶原和糖胺聚糖等软骨特异性成分,支架弹性模量为(14.24±2.44)MPa;②PCL/GelMA/ECM支架无明显的细胞毒性;③脂肪间充质干细胞紧密贴附于PCL/GelMA/ECM支架上,细胞活性良好,可分泌细胞外基质;④PCL/GelMA/ECM支架植入大鼠皮下1周后有轻度急性炎症反应,3周后炎性反应减轻,并可见逐步支架降解;⑤PCL/GelMA/ECM/TGF-β3支架具有良好的缓释性能,可持续释放TGF-β3达60 d;⑥相对于阴性对照组,PCL/GelMA/ECM支架、PCL/GelMA/ECM/TGF-β3支架均可促进脂肪间充质干细胞的迁移,其中以PCL/GelMA/ECM/TGF-β3支架促迁移作用更显著;⑦结果表明,3D打印PCL/GelMA/ECM/TGF-β3支架可促进脂肪间充质干细胞的增殖、黏附与迁移。
https://orcid.org/0000-0002-2267-4589 (杨振) 

关键词: 骨, 材料, 支架, 转化生长因子β3, 3D生物打印, 软骨损伤, 脂肪间充质干细胞, 招募, 迁移

Abstract: BACKGROUND: The therapeutic strategy of in situ regeneration of cartilage injury by recruiting endogenous stem cells is a new research direction of cartilage tissue engineering in the future.
OBJECTIVE: To construct a tissue engineering cartilage composite scaffold that can not only recruit stem cells, promote cell adhesion and proliferation, but also be beneficial to the maturation of neo-tissue.
METHODS: Acellular cartilage extracellular matrix (ECM) and methacrylate gelatin (GelMA) were mixed to prepare photosensitive bio-ink, and three-dimensional bioprinting technology was used to prepare polycaprolactone (PCL) scaffolds and PCL/GelMA/ECM scaffolds. Transforming growth factor β3 (TGF-β3) was loaded into bio-ink to prepare PCL/GelMA/ECM/TGF-β3 scaffold, and its sustained release performance was tested. The physical and chemical properties of PCL/GelMA/ECM scaffolds were evaluated from the point of view of morphology, histology, biochemistry and biomechanics. CCK-8 assay was used to detect the cytotoxicity of PCL/GelMA/ECM scaffolds. After adipose-derived mesenchymal stem cells were seeded on PCL/GelMA/ECM scaffold for 1, 4 and 7 days, the cell viability was observed by confocal microscope and the cell adhesion was observed by scanning electron microscope. PCL/GelMA/ECM scaffolds were implanted subcutaneously in SD rats, and the infiltration of inflammatory cells and the degradation of scaffolds were observed histologically. The effects of PCL/GelMA/ECM scaffold and PCL/GelMA/ECM/TGF-β3 scaffold on the migration of adipose-derived mesenchymal stem cells were detected by Transwell chamber test, and the cells cultured alone were used as negative control.
RESULTS AND CONCLUSION: (1) The PCL/GelMA/ECM scaffolds had a three-dimensional porous reticular structure, without cellular components, contained cartilage-specific components such as type II collagen and glycosaminoglycan and its elastic modulus was (14.24±2.44) MPa. (2) PCL/GelMA/ECM scaffolds showed no obvious cytotoxicity. (3) Adipose-derived mesenchymal stem cells were adhered closely to the PCL/GelMA/ECM scaffolds, had good cell activity and could secrete extracellular matrix. (4) One week after PCL/GelMA/ECM scaffolds were implanted subcutaneously in rats, there was a mild acute inflammatory reaction, and the inflammatory reaction was alleviated after 3 weeks, and the scaffolds were gradually degraded. (5) PCL/GelMA/ECM/TGF-β3 scaffold had good sustained release performance, and TGF-β3 could be released continuously for 60 days. (6) Compared with the negative control group, PCL/GelMA/ECM scaffolds and PCL/GelMA/ECM/TGF-β3 scaffolds could promote the migration of adipose-derived mesenchymal stem cells, and PCL/GelMA/ECM/TGF-β3 scaffold could promote the migration of adipose-derived mesenchymal stem cells more significantly. (7) The results showed that three-dimensional printing PCL/GelMA/ECM/TGF-β3 scaffolds could promote the proliferation, adhesion and migration of adipose-derived mesenchymal stem cells.

Key words: one, materials, scaffold, transforming growth factor-β3, 3D bioprinting, cartilage injury, adipose derived mesenchymal stem cells, recruitment, migration

中图分类号: