中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (24): 3852-3857.doi: 10.12307/2023.517

• 干细胞基础实验 basic experiments of stem cells • 上一篇    下一篇

地塞米松对高糖诱导肾小球足细胞氧化损伤的作用机制

蒋一凡1,耿  煜1,张  新1,左中夫2   

  1. 1盘锦辽油宝石花医院,辽宁省盘锦市   124010;2锦州医科大学附属医院,辽宁省锦州市   121012
  • 收稿日期:2022-04-27 接受日期:2022-07-29 出版日期:2023-08-28 发布日期:2023-01-19
  • 通讯作者: 蒋一凡,主治医师,盘锦辽油宝石花医院,辽宁省盘锦市 124010
  • 作者简介:蒋一凡,女,1990年生,辽宁省黑山市人,汉族,主治医师,主要从事内分泌研究。
  • 基金资助:
    辽宁省自然科学基金项目(2019-ZD-0807),项目负责人:左中夫

Mechanism of dexamethasone against high glucose-induced oxidative damage to glomerular podocytes

Jiang Yifan1, Geng Yu1, Zhang Xin1, Zuo Zhongfu2   

  1. 1Panjin Liaoyou Baoshihua Hospital, Panjin 124010, Liaoning Province, China; 2Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, Liaoning Province, China
  • Received:2022-04-27 Accepted:2022-07-29 Online:2023-08-28 Published:2023-01-19
  • Supported by:
    the Natural Science Foundation of Liaoning Province, No. 2019-ZD-0807 (to ZZF)

摘要:

文题释义:

抑制轴突生长受体:是Rho/ROCK信号通路的直接上游靶基因,可通过调控该信号通路影响细胞骨架的重新排列,从而介导了糖尿病肾病的发生、发展,故推测其可能与糖尿病肾病密切相关。
肾小球足细胞:是一种黏附在肾小球基底膜表面高度分化的终末期细胞,在维持肾小球滤过功能的完整性上具有重要作用。目前研究表明,肾小球足细胞损伤与糖尿病肾病蛋白尿、肾小球硬化明确相关,是糖尿病肾病发生、发展的关键因素。

背景:地塞米松是近年来临床常用的治疗糖尿病肾病的糖皮质激素药物,其可直接作用于肾小球足细胞,通过抑制炎症反应、稳定细胞周期等来增加肾小球足细胞的存活率,但其具体作用机制尚不明确。
目的:探讨地塞米松对高糖诱导的肾小球足细胞氧化损伤的作用机制。
方法:取肾小球足细胞,分6组处理:A组常规培养,不进行处理;B组加入葡萄糖处理;C组加入葡萄糖处理48 h,随后加入缬沙坦处理
24 h;D-F组加入葡萄糖处理48 h,随后分别加入1×10-7,1×10-6,1×10-5 mol/L的地塞米松处理24 h。处理结束后,采用巢式降落式特异性PCR检测各组细胞抑制轴突生长受体基因甲基化水平,MTT法检测细胞增殖,流式细胞仪检测细胞凋亡,化学发光法氧化损伤相关指标,免疫荧光法检测过氧化物酶体增殖物激活受体γ表达。

结果与结论:①与A组比较,B组抑制轴突生长受体基因甲基化水平、细胞凋亡、丙二醛水平升高(P < 0.05),细胞增殖、超氧化物歧化酶与谷胱甘肽水平、过氧化物酶体增殖物激活受体γ表达降低(P < 0.05);②与B组比较,C组抑制轴突生长受体基因甲基化水平、细胞凋亡、丙二醛水平降低(P < 0.05),细胞增殖、超氧化物歧化酶与谷胱甘肽水平、过氧化物酶体增殖物激活受体γ表达升高(P < 0.05);③与C组比较,E、F组抑制轴突生长受体基因甲基化水平、细胞凋亡、丙二醛水平降低(P < 0.05),细胞增殖、超氧化物歧化酶与谷胱甘肽水平、过氧化物酶体增殖物激活受体γ表达升高(P < 0.05),并且F组改变程度大于E组(P < 0.05);D组各指标与C组比较差异均无显著性意义(P > 0.05);④结果表明,地塞米松可显著改善高糖诱导的肾小球足细胞氧化损伤,促进过氧化物酶体增殖物激活受体γ表达,其机制可能与阻止抑制轴突生长受体基因甲基化有关。

https://orcid.org/0000-0002-3652-0847 (蒋一凡) 

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 肾小球足细胞, 高糖损伤, 地塞米松, 抑制轴突生长受体基因甲基化, 氧化损伤, 过氧化物酶体增殖物激活受体γ

Abstract: BACKGROUND: Dexamethasone is a glucocorticoid drug commonly used for treating diabetic nephropathy in recent years. It can directly act on glomerular podocytes and increase cell survival by inhibiting inflammatory response and stabilizing cell cycle. However, its specific mechanism of action remains unclear.  
OBJECTIVE: To investigate the mechanism of dexamethasone on high glucose-induced oxidative damage to glomerular podocytes.
METHODS: Glomerular podocytes were divided into six groups: group A, routine culture with no treatment; group B, treatment with glucose; group C, treatment with glucose for 48 hours and valsartan for another 24 hours; groups D-F, treatment with glucose for 48 hours and 1×10-7, 1×10-6, 1×10-5 mol/L dexamethasone for another 24 hours, respectively. Specific touchdown nested PCR was used to detect the methylation level of Nogo receptor 1 (NgR1) in cells. MTT method was used to detect cell proliferation. Flow cytometry was used to detect cell apoptosis. Chemiluminescence method was used to detect oxidative damage-related indicators. Immunofluorescence method was used to detect peroxisome proliferator-activated receptor γ expression.  
RESULTS AND CONCLUSION: (1) Compared with group A, group B had significantly increased methylation level of NgR1, cell apoptosis, and malondialdehyde level (P < 0.05), but significantly decreased cell proliferation, superoxide dismutase and glutathione levels, and peroxisome proliferator-activated receptor γ expression (P < 0.05). (2) Compared with group B, group C had significantly decreased methylation level of NgR1, cell apoptosis, and malondialdehyde level (P < 0.05), but significantly increased cell proliferation, superoxide dismutase and glutathione levels, and peroxisome proliferator-activated receptor γ expression (P < 0.05). (3) Compared with group C, groups E and F had significantly decreased methylation level of NgR1, cell apoptosis, and malondialdehyde level (P < 0.05), but significantly increased cell proliferation, superoxide dismutase and glutathione levels, and peroxisome proliferator-activated receptor γ expression (P < 0.05). Moreover, these changes were more obvious in group F than group E (P < 0.05); however, there was no significant difference between groups D and C (P > 0.05). (4) To conclude, dexamethasone can significantly improve oxidative damage to glomerular podoccytes induced by high glucose and promote the expression of peroxisome proliferator-activated receptor γ, which may be related to inhibition of Ngr1 gene methylation.

Key words: glomerular podocyte, high glucose-induced damage, dexamethasone, Ngr1 gene methylation, oxidative damage, peroxisome proliferator-activated receptor γ

中图分类号: