中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (21): 3391-3397.doi: 10.12307/2023.420

• 生物材料综述 biomaterial review • 上一篇    下一篇

支架材料对成血管微环境的影响及作用机制

张  逸,任思聪,皇甫慧敏,徐  静,杨  珍,周延民   

  1. 吉林大学口腔医院种植科,吉林省长春市  130021
  • 收稿日期:2022-06-08 接受日期:2022-07-21 出版日期:2023-07-28 发布日期:2022-11-24
  • 通讯作者: 周延民,教授,主任医师,博士生导师,吉林大学口腔医院种植科,吉林省长春市 130021
  • 作者简介:张逸,女,1997年生,江苏省盐城市人,汉族,吉林大学口腔医学院在读硕士,主要从事口腔临床医学和骨组织工程相关研究。

Effects of scaffolds on angiogenic microenvironment and its mechanism

Zhang Yi, Ren Sicong, Huangfu Huimin, Xu Jing, Yang Zhen, Zhou Yanmin   

  1. Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin Province, China
  • Received:2022-06-08 Accepted:2022-07-21 Online:2023-07-28 Published:2022-11-24
  • Contact: Zhou Yanmin, Professor, Chief physician, Doctoral supervisor, Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin Province, China
  • About author:Zhang Yi, Master candidate, Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin Province, China

摘要:


文题释义:

细胞微环境:由相邻细胞和非细胞成分(可溶性因子和细胞外基质等)共同构成,提供不同的生物物理和生物化学信号,以协同和拮抗的方式调节细胞的行为和功能。
血管生成:从先前存在的血管中形成新的血管,包括在血管前端发芽、分支、管腔形成和吻合,以及重塑为分层模式和功能性灌注的血管网络,从而为组织的修复和再生提供必需的营养和氧气。

背景:血管生成是组织修复和再生的关键,但血管化问题一直是组织工程的难题。通过仿生支架材料设计和调控成血管微环境,是解决成血管问题的有效途径。
目的:综述支架材料对成血管微环境的影响及作用机制,为再生医学中生物材料的设计提供思路。
方法:利用计算机检索中国知网、PubMed数据库相关文献,中文检索词为“血管生成、支架材料”,英文检索词为“angiogenesis,scaffolds,tissue engineering,microenvironment”,部分经典文献延长检索时间限制,分析所得文献的摘要及内容,通过纳入和排除标准得到相关文献,对62篇符合标准的文献进行综述。
结果与结论:①一个完整的血管网络是组织工程成功的关键,为了生成完整的血管化网络,必须模拟和再现血管生态位,血管生态位包括血管周围的生物物理和生物化学微环境。②支架材料的设计对于优化血管生成信号通路以支持血管细胞在组织中的附着、增殖、分化或迁移是必要的。③通过调节工程支架材料的生物物理和生物化学特性,如硬度、表面形貌、孔隙结构、生物分子功能化和血管生成因子的负载等,可以提高机体再生潜力,驱动内源性细胞的增殖和迁移,实现成血管微环境的模拟和重现,从而加速血管生成。④因此,利用仿生支架材料提供的生物物理和生物化学信号对成血管微环境进行精确调控,在组织工程功能性血管网络的构建方面有很大的发展前景。
https://orcid.org/0000-0002-3092-3127(张逸);https://orcid.org/0000-0002-4173-6765(周延民)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 血管生成, 组织工程, 支架材料, 微环境, 生物物理, 生物化学, 再生医学

Abstract: BACKGROUND: Angiogenesis is the key to tissue repair and regeneration, but vascularization is also a problem of tissue engineering. It is an effective way to solve the problem of angiogenesis by designing biomimetic scaffold materials and regulating the microenvironment of angiogenesis. 
OBJECTIVE: To review the effects and mechanisms of scaffolds on the angiogenic microenvironment, providing ideas for the design of biomaterials in regenerative medicine.
METHODS: PubMed and CNKI were searched using the Chinese keywords of “angiogenesis, scaffolds” and English keywords of “angiogenesis, scaffolds, tissue engineering, microenvironment”. The search time limit was extended for some classical literature. The abstracts and contents of the retrieved literature were analyzed, and 62 eligible articles were obtained as per inclusion and exclusion criteria.
RESULTS AND CONCLUSION: (1) A complete vascular network is a key to the success of tissue engineering. To generate a complete vascularized network, the vascular niche must be simulated and reproduced. Vascular niches include the biophysical and biochemical microenvironments surrounding blood vessels. (2) The design of the scaffold is necessary to optimize the angiogenesis signaling pathway to support the attachment, proliferation, differentiation, or migration of vascular cells in tissues. (3) Adjusting the biophysical and biochemical characteristics of the scaffold, such as hardness, surface morphology, pore structure, functional biomolecules and angiogenesis factor of load, and so on, can improve the body’s growth potential, driven by endogenous cell proliferation and migration, implemented as vascular microenvironment simulation and reproduction, improving the angiogenesis. (4) Therefore, the precise regulation of the vascular microenvironment by biophysical and biochemical cues of engineered biomaterials has great prospects in the construction of tissue engineering functional vascular networks. 

Key words: angiogenesis, tissue engineering, scaffolds, microenvironment, biophysics, biochemistry, regenerative medicine

中图分类号: