[1] RACHNER TD, KHOSLA S, HOFBAUER LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276-1287.
[2] RADI IA, IBRAHIM W, ISKANDAR SMS, et al. Prognosis of dental implants in patients with low bone density: A systematic review and meta-analysis. J Prosthet Dent. 2018;120(5): 668-677.
[3] TEMMERMAN A, RASMUSSON L, KÜBLER A, et al. A Prospective, Controlled, Multicenter Study to Evaluate the Clinical Outcome of Implant Treatment in Women with Osteoporosis/Osteopenia: 5-Year Results. J Dent Res. 2019; 98(1):84-90.
[4] YIN G, LIU H, LI J, et al. Adenoviral delivery of adiponectin ameliorates osteogenesis around implants in ovariectomized rats. J Gene Med. 2019;21(2-3):e3069.
[5] DEREKA X, CALCIOLARI E, DONOS N, et al. Osseointegration in osteoporotic-like condition: A systematic review of preclinical studies. J Periodontal Res. 2018;53(6): 933-940.
[6] GRISA A, VEITZ-KEENAN A. Is osteoporosis a risk factor for implant survival or failure. Evid Based Dent. 2018;19(2): 51-52.
[7] 周延民,汪汉池,赵静辉,等.种植体表面改性效果的研究[J].口腔医学研究,2018,34(4):343-346.
[8] PILMANE M, SALMA-ANCANE K, LOCA D, et al. Strontium and strontium ranelate: Historical review of some of their functions. Mater Sci Eng C Mater Biol Appl. 2017;78: 1222-1230.
[9] SCARDUELI CR, BIZELLI-SILVEIRA C, MARCANTONIO RAC, et al. Systemic administration of strontium ranelate to enhance the osseointegration of implants: systematic review of animal studies. Int J Implant Dent. 2018;4(1):21.
[10] OFFERMANNS V, ANDERSEN OZ, RIEDE G, et al. Effect of strontium surface-functionalized implants on early and late osseointegration: A histological, spectrometric and tomographic evaluation. Acta Biomater. 2018;69:385-394.
[11] ROMERO-GAVILÁN F, ARAÚJO-GOMES N, GARCÍA-ARNÁEZ I, et al. The effect of strontium incorporation into sol-gel biomaterials on their protein adsorption and cell interactions. Colloids Surf B Biointerfaces. 2019;174:9-16.
[12] CHEN X, CHEN Y, SHEN J, et al. Positive modulation of osteogenesis on a titanium oxide surface incorporating strontium oxide: An in vitro and in vivo study. Mater Sci Eng C Mater Biol Appl. 2019;99:710-718.
[13] LIU C, ZHANG Y, WANG L, et al. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro. PLoS One. 2015;10(11):e0140669.
[14] ZHOU C, XU AT, WANG DD, et al. The effects of Sr-incorporated micro/nano rough titanium surface on rBMSC migration and osteogenic differentiation for rapid osteointegration. Biomater Sci. 2018;6(7):1946-1961.
[15] POLISETTI N, CHAITANYA VG, BABU PP, et al. Isolation, characterization and differentiation potential of rat bone marrow stromal cells. Neurol India. 2010;58(2):201-208.
[16] INSUA A, MONJE A, WANG HL, et al. Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss. J Biomed Mater Res A. 2017; 105(7):2075-2089.
[17] OFFERMANNS V, ANDERSEN OZ, SILLASSEN M, et al. A comparative in vivo study of strontium-functionalized and SLActive™ implant surfaces in early bone healing. Int J Nanomedicine. 2018;13:2189-2197.
[18] LIU F, LI Y, LIANG J, et al. Effects of micro/nano strontium-loaded surface implants on osseointegration in ovariectomized sheep. Clin Implant Dent Relat Res. 2019; 21(2):377-385.
[19] IBRAHIM M, SCHOELERMANN J, MUSTAFA K, et al. TiO2 nanoparticles disrupt cell adhesion and the architecture of cytoskeletal networks of human osteoblast-like cells in a size dependent manner. J Biomed Mater Res A. 2018;106(10): 2582-2593.
[20] FU DL, JIANG QH, HE FM, et al. Adhesion of bone marrow mesenchymal stem cells on porous titanium surfaces with strontium-doped hydroxyapatite coating. J Zhejiang Univ Sci B. 2017; 18(9): 778-788.
[21] MULLEN CA, VAUGHAN TJ, VOISIN MC, et al. Cell morphology and focal adhesion location alters internal cell stress. J R Soc Interface. 2014;11(101):20140885.
[22] ZHAO L, WANG H, HUO K, et al. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials. 2013;34(1):19-29.
[23] HANDSCHIN AE, EGERMANN M, TRENTZ O, et al. Cbfa-1 (Runx-2) and osteocalcin expression by human osteoblasts in heparin osteoporosis in vitro. Clin Appl Thromb Hemost. 2006; 12(4):465-472.
[24] LIAN JB, JAVED A, ZAIDI SK, et al. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr. 2004;14(1-2):1-41.
[25] HU D, LI K, XIE Y, et al. The combined effects of nanotopography and Sr ion for enhanced osteogenic activity of bone marrow mesenchymal stem cells (BMSCs). J Biomater Appl. 2017;31(8):1135-1147.
[26] KNIGHT CG, MORTON LF, ONLEY DJ, et al. Identification in collagen type I of an integrin alpha2 beta1-binding site containing an essential GER sequence. J Biol Chem. 1998; 273(50):33287-33294.
[27] DRIVER J, WEBER CE, CALLACI JJ, et al. Alcohol inhibits osteopontin-dependent transforming growth factor-β1 expression in human mesenchymal stem cells. J Biol Chem. 2015;290(16):9959-9973.
[28] REICHERT JC, QUENT VM, BURKE LJ, et al. Mineralized human primary osteoblast matrices as a model system to analyse interactions of prostate cancer cells with the bone microenvironment. Biomaterials. 2010;31(31):7928-7936.
[29] LIU L, LUO Q, SUN J, et al. Cytoskeletal control of nuclear morphology and stiffness are required for OPN-induced bone-marrow-derived mesenchymal stem cell migration. Biochem Cell Biol. 2019;97(4):463-470.
[30] GENG Z, WANG X, ZHAO J, et al. The synergistic effect of strontium-substituted hydroxyapatite and microRNA-21 on improving bone remodeling and osseointegration. Biomater Sci. 2018;6(10):2694-2703.
[31] MI B, XIONG W, XU N, et al. Strontium-loaded titania nanotube arrays repress osteoclast differentiation through multiple signalling pathways: In vitro and in vivo studies. Sci Rep. 2017;7(1):2328.
[32] LU X, ZHANG W, LIU Z, et al. Application of a Strontium-Loaded, Phase-Transited Lysozyme Coating to a Titanium Surface to Enhance Osteogenesis and Osteoimmunomodulation. Med Sci Monit. 2019;25: 2658-2671.
[33] YASUDA H, SHIMA N, NAKAGAWA N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597-3602.
[34] LI CW, LIANG B, SHI XL, et al. Opg/Rankl mRNA dynamic expression in the bone tissue of ovariectomized rats with osteoporosis. Genet Mol Res. 2015;14(3):9215-9224.
|