中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (15): 2423-2429.doi: 10.12307/2024.405

• 生物材料综述 biomaterial review • 上一篇    下一篇

碳纳米材料在周围神经再生领域的研究与应用

翟耘浩,钱  运   

  1. 上海交通大学医学院附属第六人民医院骨科,上海市  200233
  • 收稿日期:2023-07-01 接受日期:2023-08-02 出版日期:2024-05-28 发布日期:2023-09-23
  • 通讯作者: 钱运,博士,副研究员,上海交通大学医学院附属第六人民医院骨科,上海市 200233
  • 作者简介:翟耘浩,男,2000年生,吉林省长春市人,汉族,主要从事组织工程与神经再生相关研究。
  • 基金资助:
    国家重点研发计划(2021YFC2400801),项目负责人:钱运;国家自然科学基金中德合作交流项目(M-0699),项目负责人:钱运;国家自然科学基金项目(82002290),项目负责人:钱运;上海市第六人民医院优秀人才培育项目(ynyq202201),项目负责人:钱运

Research and application of carbon nanomaterials in peripheral nerve regeneration

Zhai Yunhao, Qian Yun   

  1. Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
  • Received:2023-07-01 Accepted:2023-08-02 Online:2024-05-28 Published:2023-09-23
  • Contact: Qian Yun, MD, Associate researcher, Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
  • About author:Zhai Yunhao, Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
  • Supported by:
    National Key Research and Development Program of China, No. 2021YFC2400801 (to QY); Sino-German Mobility Programme of National Natural Science Foundation of China, No. M-0699 (to QY); National Natural Science Foundation of China, No. 82002290 (to QY); Excellent Youth Cultivation Program of Shanghai Sixth People’s Hospital, No. ynyq202201 (to QY)

摘要:


文题释义:

碳纳米材料:指纳米级别尺寸的碳材料,包括碳纳米管、富勒烯、石墨烯、纳米金刚石及各类衍生物等。碳纳米材料(如石墨烯及碳纳米管等)在微观上的特殊大π共轭结构,在宏观上表现为多种优异的理化性质,因此碳纳米材料被广泛应用于生物医学领域。碳纳米材料神经导管则是指负载了碳纳米材料的功能神经导管,在修复周围神经损伤方面具备较大潜力。
周围神经损伤及修复:周围神经是指人体除中枢神经(脑和脊髓)以外的神经,运动系统周围神经损伤一般是指四肢神经受损,常继发受损神经支配区域的感觉及运动功能障碍,且由于神经组织再生能力有限,周围神经损伤至今仍是临床治疗难点,一般以自体神经移植作为修复周围神经损伤的金标准。


背景:虽然神经导管为周围神经修复提供了潜在的治疗手段,但传统神经导管只能为修复过程提供机械通道支持,治疗效果仍有待提高。碳纳米材料具有良好的理化性质,在电化学及组织工程等领域有着广阔的应用前景。负载碳纳米材料的神经导管,在经过适宜的功能化修饰后,有望进一步提升神经修复质量。

目的:对近年来负载碳纳米材料的神经导管/支架应用于周围神经修复的研究进展作一综述。
方法:在PubMed、Web of Science、中国知网和万方数据库中检索在周围神经再生方面应用碳纳米材料导管的相关文献,英文检索词为“carbon nanomaterials,carbon-based nanomaterials,nerve conduit,nerve guidance conduit,scaffold,nerve regeneration,peripheral nerve repair,peripheral nerve injury”,中文检索词为“碳纳米材料,碳材料,石墨烯,碳纳米管,神经导管,神经支架,神经修复,神经再生,周围神经损伤”,最终纳入69篇文章进行综述。

结果与结论:①碳纳米材料主要通过激活钙离子通道及诱导胞内钙活动发生的方式恢复受损神经生物电信号传导,不同神经导管设计策略的应用提高了神经修复的效果。②神经内血管化是修复周围神经损伤的前提,碳纳米材料生成的活性氧及活性氮触发了后续相关信号通路,促进神经内新生血管形成。③M1和M2型巨噬细胞的比例变化会影响周围神经损伤的修复,碳纳米材料在损伤早期通过促进巨噬细胞向M2型极化以发挥抗炎和促神经再生作用。④部分碳纳米材料在胞内诱导过量活性氧生成,可能具有不利于神经修复的细胞毒性,但合适的功能化修饰能够改善碳纳米材料产生的不良作用。⑤碳纳米材料虽然能够恢复周围神经损伤微环境,发挥促进周围神经再生的积极作用,但由于固有的细胞毒性及不明确的体内转归降解途径,碳纳米材料距离临床应用仍有距离。未来研究可以通过如功能化改性等方法提高碳纳米材料的生物相容性,而经过改良的碳纳米材料在神经组织工程领域有着较好的应用前景。

https://orcid.org/0000-0003-1600-5693(钱运)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 碳纳米材料, 碳材料, 石墨烯, 碳纳米管, 神经导管, 神经支架, 周围神经损伤, 神经修复, 神经再生, 组织工程

Abstract: BACKGROUND: Although nerve conduits provide an effective treatment approach for nerve repair, traditional nerve conduits merely serve as mechanical channels in the repair process. The therapeutic effect still needs to be improved. Carbon nanomaterials have good physicochemical properties and hold great potential in fields such as electrochemistry and tissue engineering. Nerve conduits loaded with carbon nanomaterials, after appropriate functional modifications, are expected to further enhance the quality of nerve repair.
OBJECTIVE: To review the recent research progress of carbon nanomaterial-loaded nerve conduits/scaffolds for peripheral nerve repair.
METHODS: PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Wanfang databases were searched for the literature on the application of carbon nanomaterial catheters in peripheral nerve regeneration. English keywords were “carbon nanomaterials, carbon-based nanomaterials, nerve conduit, nerve guidance conduit, scaffold, nerve regeneration, peripheral nerve repair, peripheral nerve injury” and Chinese keywords were “carbon nanomaterials, carbon materials, graphene, carbon nanotubes, nerve conduits, nerve scaffolds, nerve repair, nerve regeneration, peripheral nerve injury”. Finally, 69 articles were selected for this review.
RESULTS AND CONCLUSION: (1) Carbon nanomaterials primarily restore damaged neural bioelectric signal conduction by activating calcium ion channels and inducing intracellular calcium activity. The application of various nerve conduit design strategies has improved the effectiveness of nerve repair. (2) Successful intraneural vascularization is the prerequisite for repairing peripheral nerve injuries. Reactive oxygen species and reactive nitrogen species generated by carbon nanomaterials trigger subsequent signaling pathways that promote intraneural vascularization. (3) The ratio of M1 to M2 macrophages affects the repair of peripheral nerve injuries. Carbon nanomaterials promote the polarization of macrophages into the M2 phenotype, thereby exerting their anti-inflammatory and regenerative effects. (4) Some carbon nanomaterials may induce excessive generation of reactive oxygen species intracellularly, potentially exhibiting cytotoxicity detrimental to nerve repair. However, appropriate functional modifications can improve the adverse effects caused by carbon nanomaterials. (5) Although carbon nanomaterials can restore the microenvironment of peripheral nerve injuries and play a positive role in promoting peripheral nerve regeneration, their inherent cytotoxicity and unclear in vivo degradation pathways still pose challenges for clinical application. However, by employing methods such as functional modification, it is possible to enhance the biocompatibility of carbon nanomaterials. Modified carbon nanomaterials have promising prospects in the field of neural tissue engineering.

Key words: carbon nanomaterial, carbon material, graphene, carbon nanotube, nerve conduit, nerve scaffold, peripheral nerve injury, nerve repair, nerve regeneration, tissue engineering

中图分类号: