[1] 梁健,苏睿,宋泉生,等.柚皮苷对骨细胞的作用以及负载柚皮苷的羟基磷灰石复合支架治疗骨缺损的研究[J].医学研究杂志, 2023,52(5):18-20,110.
[2] 陈泽驹,冯少龙,刘桂宏,等.基于骨组织工程的骨再生策略[J].中国医药生物技术,2022,17(5):440-444.
[3] 刘迪.三七总皂苷调控TGF-β1/Smads信号传导促进牵张成骨新骨形成的机制研究[D].南宁:广西医科大学,2020.
[4] ROSETI L, PARISI V, PETRETTA M, et al. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246-1262.
[5] 关德强,于波,李欣,等.中药促进骨再生的研究进展[J].时珍国医国药,2018,29(4):956-958.
[6] 王伟佳,唐硕,马应钧,等.纳米羟基磷灰石复合材料在骨组织工程支架中的研究现状[J].湖南师范大学自然科学学报,2022,45(4):123-129.
[7] 陈艺菲,郑赛男,阙林.3D打印复合材料骨组织工程支架及其在颌面骨再生中的研究进展[J].山东医药, 2022,62(25):83-86.
[8] 熊伟,袁灵梅,钱国文,等.“补肾壮骨”中药应用于骨组织工程支架修复节段性骨缺损[J].中国组织工程研究,2023,27(21):3438-3444.
[9] BROVOLD M, ALMEIDA JI, PLA-PALACIN I, et al. Naturally-Derived Biomaterials for Tissue Engineering Applications. Adv Exp Med Biol. 2018; 1077:421-449.
[10] INSUASTI-CRUZ E, SUAREZ-JARAMILLO V, MENA UK, et al. Natural Biomaterials from Biodiversity for Healthcare Applications. Adv Healthc Mater. 2022;11(1):e2101389.
[11] VENKATESAN J, KIM SK. Chitosan composites for bone tissue engineering--an overview. Mar Drugs. 2010;8(8):2252-2266.
[12] 杨为中,周大利,尹光福,等.骨组织工程支架材料磷酸钙双相生物陶瓷的研究进展[J].硅酸盐学报,2004,32(9):1143-1149.
[13] 李慎松,文益民,李志琳,等.骨髓基质干细胞复合羟基磷灰石-磷酸三钙修复骨缺损过程中的微循环变化[J].中国组织工程研究与临床康复,2007,10(35):7050-7052.
[14] JING Y, QUAN C, LIU B, et al. A Mini Review on the Functional Biomaterials Based on Poly(lactic acid) Stereocomplex. Polym Rev. 2016;56(2):262-286.
[15] KIM DY, KWON DY, KWON JS, et al. Stimuli-Responsive InjectableIn situ-Forming Hydrogels for Regenerative Medicines. Polym Rev. 2015;55(3):207-452.
[16] CHENITE A, CHAPUT C, WANG D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21(21):2155-2161.
[17] AHMADI R, DE BRUIJN JD. Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels. J Biomed Mater Res A. 2008;86(3):824-832.
[18] SELIKTAR D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336(6085):1124-1128.
[19] 柳玉梅.负载黄连素的壳聚糖温敏水凝胶的制备及体外抑菌研究[D].南京:南京大学,2020.
[20] 宁钰,秦文,任亚辉,等.载淫羊藿苷/凹凸棒石/Ⅰ型胶原/聚己内酯复合支架修复兔胫骨缺损的实验研究[J].中国修复重建外科杂志, 2019,33(9):1181-1189.
[21] 丁焕文,涂强,王迎军,等.数字化骨科手术新方法的建立及其临床广泛应用[J].中国骨科临床与基础研究杂志,2010,2(2):92-97.
[22] 周静,冯卓卓,罗洁,等.纳米支架材料在骨组织工程应用中的优势[J].临床口腔医学杂志,2018,34(10):633-635.
[23] 姜涛,凌翠敏,陈庆真,等.淫羊藿苷通过提高自噬促进成骨细胞分化防治骨质疏松[J].中国组织工程研究,2021,25(17):2643-2649.
[24] JEONG HM, HAN EH, JIN YH, et al. Xanthohumol from the hop plant stimulates osteoblast differentiation by RUNX2 activation. Biochem Biophys Res Commun. 2011;409(1):82-89.
[25] LIN SY, KANG L, WANG CZ, et al. (-)-Epigallocatechin-3-Gallate (EGCG) Enhances Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Molecules. 2018;23(12):3221.
[26] XUE D, CHEN E, ZHANG W, et al. The role of hesperetin on osteogenesis of human mesenchymal stem cells and its function in bone regeneration. Oncotarget. 2017;8(13):21031-21043.
[27] YING X, SUN L, CHEN X, et al. Silibinin promotes osteoblast differentiation of human bone marrow stromal cells via bone morphogenetic protein signaling. Eur J Pharmacol. 2013;721(1-3):225-230.
[28] CHEN C, WU M, LEI H, et al. A Novel Prenylflavonoid Icariside I Ameliorates Estrogen Deficiency-Induced Osteoporosis via Simultaneous Regulation of Osteoblast and Osteoclast Differentiation. ACS Pharmacol Transl Sci. 2023;6(2):270-280.
[29] GUO AJ, CHOI RC, ZHENG KY, et al. Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling. Chin Med. 2012;7:10.
[30] WU GJ, CHEN KY, YANG JD, et al. Naringin Improves Osteoblast Mineralization and Bone Healing and Strength through Regulating Estrogen Receptor Alpha-Dependent Alkaline Phosphatase Gene Expression. J Agric Food Chem. 2021;69(44):13020-13033.
[31] 张波,胡凌云,苟林,等.槲皮素对人骨髓间充质干细胞增殖和成骨分化的影响及分子机制[J].中国骨质疏松杂志,2022,28(12):1765-1769.
[32] 张文静.槲皮素对炎症状态下人牙周膜干细胞成骨损伤的改善作用及机制探究[D].济南:山东大学,2021.
[33] LEE IS, LIM J, GAL J, et al. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem Int. 2011;58(2):153-160.
[34] WEAVER CM, ALEKEL DL, WARD WE, et al. Flavonoid intake and bone health. J Nutr Gerontol Geriatr. 2012;31(3):239-253.
[35] 张敏,张晓明,刘童斌.柚皮苷在骨组织再生领域的应用潜力[J].中国组织工程研究,2023,27(5):787-792.
[36] ALBINI A, DELL’EVA R, VENE R, et al. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J. 2006;20(3):527-529.
[37] 宁兆荣,郭延伟,李松,等.脂肪干细胞复合载淫羊藿苷支架材料对兔下颌骨缺损的修复[J].实用口腔医学杂志,2013,29(5):611-615.
[38] XiA L, LI Y, ZHOU Z, et al. Icariin delivery porous PHBV scaffolds for promoting osteoblast expansion in vitro. Mater Sci Eng C Mater Biol Appl. 2013;33(6):3545-3552.
[39] XIE Y, SUN W, YAN F, et al. Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity. Int J Nanomedicine. 2019;14:6019-6033.
[40] JI Y, WANG L, WATTS DC, et al. Controlled-release naringin nanoscaffold for osteoporotic bone healing. Dent Mater. 2014;30(11):1263-1273.
[41] YU X, SHEN G, SHANG Q, et al. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Int J Biol Macromol. 2021;193(Pt A):510-518.
[42] SONG JE, JEON YS, TIAN J, et al. Evaluation of silymarin/duck’s feet-derived collagen/hydroxyapatite sponges for bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2019;97:347-355.
[43] KHOOBI MM, NADDAF H, HOVEIZI E, et al. Silymarin effect on experimental bone defect repair in rat following implantation of the electrospun PLA/carbon nanotubes scaffold associated with Wharton’s jelly mesenchymal stem cells. J Biomed Mater Res A. 2020;108(9):1944-1954.
[44] LEENA RS, VAIRAMANI M, SELVAMURUGAN N. Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro. Colloids Surf B Biointerfaces. 2017;158:308-318.
[45] REN M, WANG X, HU M, et al. Enhanced bone formation in rat critical-size tibia defect by a novel quercetin-containing alpha-calcium sulphate hemihydrate/nano-hydroxyapatite composite. Biomed Pharmacother. 2022;146:112570.
[46] PREETHI AM, BELLARE JR. Concomitant Effect of Quercetin- and Magnesium-Doped Calcium Silicate on the Osteogenic and Antibacterial Activity of Scaffolds for Bone Regeneration. Antibiotics (Basel). 2021;10(10):1170.
[47] MURGIA D, MAUCERI R, CAMPISI G, et al. Advance on Resveratrol Application in Bone Regeneration: Progress and Perspectives for Use in Oral and Maxillofacial Surgery. Biomolecules. 2019;9(3):94.
[48] 王海英,张宇琪,孙昊天,等.姜黄素及其衍生物的作用及机制[J].生理科学进展,2022,53(4):271-275.
[49] XIA N, DAIBER A, FORSTERMANN U, et al. Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol. 2017;174(12):1633-1646.
[50] TAMAKI N, CRISTINA OR, INAGAKI Y, et al. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model. Free Radic Biol Med. 2014;75:222-229.
[51] XIAO CJ, YU XJ, XIE JL, et al. Protective effect and related mechanisms of curcumin in rat experimental periodontitis. Head Face Med. 2018;14(1):12.
[52] TAN L, CAO Z, CHEN H, et al. Curcumin reduces apoptosis and promotes osteogenesis of human periodontal ligament stem cells under oxidative stress in vitro and in vivo. Life Sci. 2021;270:119125.
[53] DAI Z, LI Y, QUARLES LD, et al. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine. 2007;14(12):806-814.
[54] TSENG PC, HOU SM, CHEN RJ, et al. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res. 2011;26(10):2552-2563.
[55] LIANG Z, XUE Y, WANG T, et al. Curcumin inhibits the migration of osteoclast precursors and osteoclastogenesis by repressing CCL3 production. BMC Complement Med Ther. 2020;20(1):234.
[56] SHI W, LING D, ZHANG F, et al. Curcumin promotes osteogenic differentiation of human periodontal ligament stem cells by inducting EGR1 expression. Arch Oral Biol. 2021;121:104958.
[57] CHEN YB, LAN YW, HUNG TH, et al. Mesenchymal stem cell-based HSP70 promoter-driven VEGFA induction by resveratrol promotes angiogenesis in a mouse model. Cell Stress Chaperones. 2015;20(4):643-652.
[58] HOSSAIN DM, BHATTACHARYYA S, DAS T, et al. Curcumin: the multi-targeted therapy for cancer regression. Front Biosci (Schol Ed). 2012;4(1):335-355.
[59] SARKAR N, BOSE S. Liposome-Encapsulated Curcumin-Loaded 3D Printed Scaffold for Bone Tissue Engineering. ACS Appl Mater Interfaces. 2019;11(19):17184-17192.
[60] AL-BISHARI AM, AL-SHAAOBI BA, AL-BISHARI AA, et al. Vitamin D and curcumin-loaded PCL nanofibrous for engineering osteogenesis and immunomodulatory scaffold. Front Bioeng Biotechnol. 2022;10:975431.
[61] WEI B, WANG W, LIU X, et al. Gelatin methacrylate hydrogel scaffold carrying resveratrol-loaded solid lipid nanoparticles for enhancement of osteogenic differentiation of BMSCs and effective bone regeneration. Regen Biomater. 2021;8(5):b44.
[62] LI S, LIU X, CHEN X, et al. Research Progress on Anti-Inflammatory Effects and Mechanisms of Alkaloids from Chinese Medical Herbs. Evid Based Complement Alternat Med. 2020;2020:1303524.
[63] BOBEREK JM, STACH J, GOOD L. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One. 2010;5(10):e13745.
[64] PENG L, KANG S, YIN Z, et al. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. Int J Clin Exp Pathol. 2015;8(5): 5217-5223.
[65] KANG S, LI Z, YIN Z, et al. The antibacterial mechanism of berberine against Actinobacillus pleuropneumoniae. Nat Prod Res. 2015;29(23):2203-2206.
[66] WANG X, QIU S, YAO X, et al. Berberine inhibits Staphylococcus epidermidis adhesion and biofilm formation on the surface of titanium alloy. J Orthop Res. 2009;27(11):1487-1492.
[67] WANG X, YAO X, ZHU Z, et al. Effect of berberine on Staphylococcus epidermidis biofilm formation. Int J Antimicrob Agents. 2009;34(1):60-66.
[68] HE XF, ZHANG L, ZHANG CH, et al. Berberine alleviates oxidative stress in rats with osteoporosis through receptor activator of NF-kB/receptor activator of NF-kB ligand/osteoprotegerin (RANK/RANKL/OPG) pathway. Bosn J Basic Med Sci. 2017;17(4):295-301.
[69] TAO K, XIAO D, WENG J, et al. Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/beta-catenin signaling pathway. Toxicol Lett. 2016;240(1):68-80.
[70] LEE HW, SUH JH, KIM HN, et al. Berberine promotes osteoblast differentiation by Runx2 activation with p38 MAPK. J Bone Miner Res. 2008; 23(8):1227-1237.
[71] HU JP, NISHISHITA K, SAKAI E, et al. Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-kappaB and Akt pathways. Eur J Pharmacol. 2008;580(1-2):70-79.
[72] BANAEI P, NAZEM F, NAZARI A, et al. Preconditioning Effect of High-Intensity Interval Training (HIIT) and Berberine Supplementation on the Gene Expression of Angiogenesis Regulators and Caspase-3 Protein in the Rats with Myocardial Ischemia-Reperfusion (IR) Injury. Biomed Res Int. 2020;2020:4104965.
[73] ZHU ML, YIN YL, PING S, et al. Berberine promotes ischemia-induced angiogenesis in mice heart via upregulation of microRNA-29b. Clin Exp Hypertens. 2017;39(7):672-679.
[74] 柳玉梅.负载黄连素的壳聚糖温敏水凝胶的制备及体外抑菌研究[D].南京:南京大学,2020.
[75] 汪芳,陈云平,苏香萍.抗菌止血壳聚糖/黄连素多孔干凝胶的制备及其表征[J].中国组织工程研究,2017,21(6):899-905.
[76] MA L, YU Y, LIU H, et al. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair. Sci Rep. 2021;11(1):1027.
[77] 张晓军,刘健,万磊,等.基于缺氧诱导因子及PI3K-AKT-mTOR信号通路诱导佐剂关节炎滑膜血管新生的实验观察[J].中国临床保健杂志, 2018,21(1):84-87.
[78] 柳毅,陈建治.三七总皂苷及其诱导成骨的试验和机制[J].国际口腔医学杂志,2015,42(1):75-78.
[79] KIM HM, KIM DH, HAN HJ, et al. Ginsenoside Re Promotes Osteoblast Differentiation in Mouse Osteoblast Precursor MC3T3-E1 Cells and a Zebrafish Model. Molecules. 2016;22(1):42.
[80] LUO P, YU L, LIN Q, et al. Strontium Modified Calcium Sulfate Hemihydrate Scaffold Incorporating Ginsenoside Rg1/Gelatin Microspheres for Bone Regeneration. Front Bioeng Biotechnol. 2020;8:888.
[81] CHEN CY, SHIE MY, LEE AK, et al. 3D-Printed Ginsenoside Rb1-Loaded Mesoporous Calcium Silicate/Calcium Sulfate Scaffolds for Inflammation Inhibition and Bone Regeneration. Biomedicines. 2021;9(8):907.
[82] 秦宇星,任前贵,沈佩锋,等.组织工程技术治疗骨缺损:应用于临床还有多远?[J].中国组织工程研究,2021,25(29):4703-4708.
[83] 陈凯,张超,王路,等.骨组织工程中促进血管化策略的研究进展[J].中国骨伤,2015,28(4):383-388.
[84] 余晓宏.云南白药对体内植入人牙周膜成纤维细胞-Bio-Oss Collagen成骨分化的组织学研究[D]. 昆明:昆明医科大学,2014.
[85] WU GS, LI HK, ZHANG WD. Metabolomics and its application in the treatment of coronary heart disease with traditional Chinese medicine. Chin J Nat Med. 2019;17(5):321-330.
[86] SUO T, WANG H, LI Z. Application of proteomics in research on traditional Chinese medicine. Expert Rev Proteomics. 2016;13(9):873-881.
[87] XIN T, ZHANG Y, PU X, et al. Trends in herbgenomics. Sci China Life Sci. 2019; 62(3):288-308. |