中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (5): 717-723.doi: 10.12307/2024.263

• 可降解吸收材料 biodegradable absorbent materials • 上一篇    下一篇

Mg-Zn-Ca合金的体外降解行为

兰伟伟1,2,于耀东1,黄  棣1,2,陈维毅1,2   

  1. 1太原理工大学生物医学工程学院纳米生物材料与再生医学研究中心,山西省太原市  030024;2山西浙大新材料与化工研究院,山西省太原市 030032
  • 收稿日期:2023-03-06 接受日期:2023-04-23 出版日期:2024-02-18 发布日期:2023-08-16
  • 通讯作者: 黄棣,博士,教授,硕士生导师,太原理工大学生物医学工程学院纳米生物材料与再生医学研究中心,山西省太原市 030024;山西浙大新材料与化工研究院,山西省太原市 030032
  • 作者简介:兰伟伟,1992年生,山西省太原市人,汉族,博士,讲师,主要从事医用可降解金属、高分子材料研发制备方面的研究。
  • 基金资助:
    国家自然科学基金项目(12272253),项目负责人:黄棣;国家自然科学基金项目(12202302),项目负责人:兰伟伟;山西浙大新材料与化工研究院项目(2021SX-AT008),项目负责人:黄棣

In vitro degradation behavior of Mg-Zn-Ca alloys

Lan Weiwei1, 2, Yu Yaodong1, Huang Di1, 2, Chen Weiyi1, 2   

  1. 1Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China; 2Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, Shanxi Province, China
  • Received:2023-03-06 Accepted:2023-04-23 Online:2024-02-18 Published:2023-08-16
  • Contact: Huang Di, PhD, Professor, Master’s supervisor, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, Shanxi Province, China
  • About author:Lan Weiwei, PhD, Lecturer, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, Shanxi Province, China
  • Supported by:
    National Natural Science Foundation of China, No. 12272253 (to HD), No. 12202302 (to LWW); a grant from Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, No. 2021SX-AT008 (to HD)

摘要:


文题释义:

Mg-Zn-Ca合金:是由镁、锌和钙等元素组成的合金,轻质、强度高,同时具有良好的生物相容性及生物活性,已被广泛应用于生物医学领域,如医疗器械和骨科和心血管等植入物。在Mg-Zn-Ca合金中,锌和钙的含量可以根据具体的应用需求进行调整,以达到最佳的性能和工艺可行性。
体外降解:是指材料在体外环境下分解或分解成较小的分子或物质的过程。在医疗领域中,体外降解测试通常将生物可降解材料暴露在模拟体液环境中以模拟其在人体内的降解过程。测试过程中,对样品进行定期取样,分析其降解产物的类型和浓度,以评估材料的降解速度、降解产物的安全性和可代谢性等指标。体外降解测试结果对于评估生物可降解材料的生物相容性和生物可降解性非常重要。


背景:鉴于人体复杂的生理环境,目前降解实验中使用的模拟生理体液种类繁多,因此分析Mg-Zn-Ca合金在不同模拟体液中的降解行为具有重要意义。 

目的:研究Mg-Zn-Ca合金在不同模拟体液中的降解过程和性能变化,明确Ca含量和模拟体液种类对合金的影响。 
方法:采用熔融挤压成型工艺制备含钙质量分数分别为0.2%,0.5%,1%的Mg-Zn-Ca合金,依次命名为Mg-Zn-0.2Ca、Mg-Zn-0.5Ca、Mg-Zn-1Ca合金,以Mg-Zn合金作为对照。将每种合金分别置于3种模拟体液(生理盐水、PBS和Hank’s液)中,对合金降解过程中的形貌、成分变化、质量损失、pH值及力学性能等进行表征分析。 

结果与结论:①随着降解时间的延长,4种合金表面生成了大量的纳米级片层和柱状结构,主要成分是MgO和Mg(OH)2,4种合金在生理盐水中的降解速度最快,在Hank’s液中的降解速率最慢,在生理盐水中的降解速率快慢为:Mg-Zn < Mg-Zn-0.2Ca < Mg-Zn-0.5Ca < Mg-Zn-1Ca,在PBS和Hank’s液中的降解速率快慢为:Mg-Zn < Mg-Zn-0.2Ca≈Mg-Zn-0.5Ca < Mg-Zn-1Ca;②随着降解时间的延长,4种合金都有一定的质量损失,其中在生理盐水中降解最快,在Hank’s液和PBS中降解缓慢,并且在相同模拟体液中,随着合金中钙含量的增加,合金的腐蚀速率明显加快;③4种合金降解环境pH值的上升主要集中在1 d内,之后趋缓,在PBS中的pH值上升幅度较其他两种模拟体液大,并且在相同模拟体液中,随着合金中钙含量的增加,降解环境pH值上升显著;④在初始状态下,各Mg-Zn-Ca合金的弹性模量均高于Mg-Zn合金;置于模拟体液中后,随着降解时间的延长,4种合金的弹性模量均有所降低,其中在生理盐水中降低最明显;⑤结果显示,Ca加入改善了Mg-Zn合金的力学性能,少量Ca不会加快合金的降解速率,但过量Ca加快了合金的降解速率,降解过程中生理盐水模拟体液对合金力学强度的影响最显著。

https://orcid.org/0000-0003-3510-227X(兰伟伟)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: Mg-Zn-Ca合金, 骨缺损, 体外降解, 力学性能, 模拟体液

Abstract: BACKGROUND: Due to the complex physiological environment of the human body, a wide variety of simulated physiological fluids have been chosen for the current degradation experiments. Therefore, it is of great interest to analyze the degradation behavior of Mg-Zn-Ca alloys in different simulated body fluid environments.
OBJECTIVE: To investigate the degradation process and property changes of Mg-Zn-Ca alloy in different simulated body fluids, and to clarify the influence of Ca content and simulated body fluid type on the alloy.
METHODS: Mg-Zn-Ca alloys with calcium content of 0.2%, 0.5% and 1% were prepared by melting extrusion molding process and were named Mg-Zn-0.2Ca, Mg-Zn-0.5Ca and Mg-Zn-1Ca alloys in turn, with Mg-Zn alloy as the control. The prepared alloys were placed into three simulated body liquids (physiological saline, PBS and Hank’s solution), and the morphology, compositional changes, mass loss, pH value and mechanical properties were characterized and analyzed during the degradation.
RESULTS AND CONCLUSION: (1) With the extension of degradation time, a large number of nanoscale lamellae and columnar structures were generated on the surface of the degraded alloy, and the main components were MgO and Mg(OH)2. The degradation rate of the four kinds of alloys in physiological saline was the fastest, and that in Hank’s solution was the slowest. The degradation rate in physiological saline was as follows: Mg-Zn < Mg-Zn-0.2Ca < Mg-Zn-0.5Ca < Mg-Zn-1Ca. The degradation rate in PBS and Hank’s solution was as follows: Mg-Zn < Mg-Zn-0.2Ca ≈ Mg-Zn-0.5Ca < Mg-Zn-1Ca. (2) With the extension of degradation time, all four kinds of alloys had a certain mass loss. The degradation in physiological saline was the fastest; the degradation in Hank’s solution and PBS was slow, and in the same simulated body fluid, with the increase of calcium content in the alloy, the corrosion rate of the alloy was obviously accelerated. (3) The pH rise was mainly concentrated in 1 day and slowed down after that, and the pH change was the largest in PBS. In the same simulated body fluid, with the increase of calcium content in the alloy, the pH value in the degradation environment increased significantly. (4) In the initial state, the elastic modulus of all Mg-Zn-Ca alloys was higher than that of Mg-Zn alloys. After being placed in simulated body fluids, the elastic modulus of the four alloys decreased with the extension of degradation time, and the decrease was most obvious in physiological saline. (5) In conclusion, a small amount of Ca addition improved the mechanical properties of Mg-Zn-Ca alloy. A small amount of Ca does not accelerate the degradation rate of the alloy, but excessive Ca accelerates the degradation rate of the alloy. During the degradation, the effect of physiological saline simulated body fluid on the mechanical strength of the alloy was the most significant.

Key words: Mg-Zn-Ca alloy, bone defect, degradation in vitro, mechanical property, simulated body fluid

中图分类号: