中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (33): 5404-5412.doi: 10.12307/2023.704
• 干细胞综述 stem cell review • 上一篇
许卢春,杨永栋,赵 赫,仲文庆,马昱堃,俞 兴
收稿日期:
2022-10-08
接受日期:
2022-11-16
出版日期:
2023-11-28
发布日期:
2023-03-31
通讯作者:
俞兴,博士,教授,主任医师,博士生导师,北京中医药大学东直门医院,北京市 100700
作者简介:
许卢春,1995年生,江西省南昌市人,汉族,北京中医药大学东直门医院在读博士,主要从事脊柱外科、脊髓损伤方面的研究。
基金资助:
Xu Luchun, Yang Yongdong, Zhao He, Zhong Wenqing, Ma Yukun, Yu Xing
Received:
2022-10-08
Accepted:
2022-11-16
Online:
2023-11-28
Published:
2023-03-31
Contact:
Yu Xing, MD, Professor, Chief physician, Doctoral supervisor, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
About author:
Xu Luchun, Doctoral candidate, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
Supported by:
摘要:
文题释义:
非编码RNA:由microRNA (miRNA)、长链非编码RNA(lncRNA)和环状RNA(circRNA)等组成,是一类不编码蛋白质的RNA。现有研究发现脊髓损伤后,与神经元细胞凋亡相关的非编码RNA出现显著差异性表达,调控特定非编码RNA的表达,可抑制脊髓损伤后神经元细胞凋亡。结果与结论:①神经元细胞凋亡为继发性脊髓损伤中极其重要的病理生理改变,是神经元死亡、脊髓功能障碍的重要致病机制之一。②动物实验研究发现,在脊髓损伤后的脊髓组织中,与神经元细胞凋亡相关的miRNA、长链非编码RNA(lncRNA)与环状RNA(circRNA)可出现差异性表达,一些促进神经元凋亡的miRNA,lncRNA与circRNA过表达,而另一部分抑制神经元凋亡的miRNA、lncRNA与circRNA表达下调。③调控特定miRNA的相应表达,主要通过靶向下调凋亡基因Bax、抑制TLR4/核转录因子κB信号通路、激活PI3K/Akt信号通路等方式可抑制脊髓损伤后神经元细胞过度凋亡。④调控lncRNA和circRNA的表达,主要通过靶向负调控的方式使得特定miRNA出现沉默或过表达,从而发挥其抗神经元细胞凋亡的作用。⑤在miRNA中,miR-125b对Smurf1/KLF2/ATF2轴及JAK1/STAT1信号通路等均可产生调节,而miR-21-5p对程序性细胞死亡因子4(PDCD4)和PI3K/AKT信号通路等可产生调节,具有多途径抗凋亡的作用。⑥在lncRNA和circRNA中,lncRNA-PTENP1,lncRNA-TCTN2和circRNA-HIPK3均对于多种miRNA具有靶向调节作用,这些非编码RNA也许可以成为脊髓损伤后神经元保护性治疗的新靶点。⑦目前对于非编码RNA调控脊髓损伤后神经元细胞凋亡还仅停留在动物及细胞研究层面,未来需要继续探索更加具有靶向作用的非编码RNA药物载体,联合生物组织工程以及其他新兴技术,争取早日向临床转化过渡。
https://orcid.org/0000-0001-7736-007X (许卢春)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
许卢春, 杨永栋, 赵 赫, 仲文庆, 马昱堃, 俞 兴. 非编码 RNA 调控脊髓损伤后神经元细胞凋亡的作用和机制[J]. 中国组织工程研究, 2023, 27(33): 5404-5412.
Xu Luchun, Yang Yongdong, Zhao He, Zhong Wenqing, Ma Yukun, Yu Xing. Effect and mechanism of non-coding RNA in regulating neuronal apoptosis after spinal cord injury[J]. Chinese Journal of Tissue Engineering Research, 2023, 27(33): 5404-5412.
[1] SUN P, LIU DZ, JICKLING GC, et al. MicroRNA-based therapeutics in central nervous system injuries. J Cereb Blood Flow Metab. 2018;38(7):1125-1148. [2] WANG F, LIU J, WANG X, et al. The emerging role of lncRNAs in spinal cord injury. Biomed Res Int. 2019;2019:3467121. [3] BIE F, WANG K, XU T, et al. The potential roles of circular RNAs as modulators in traumatic spinal cord injury. Biomed Pharmacother. 2021;141:111826. [4] CUI Y, YIN Y, XIAO Z, et al. LncRNA Neat1 mediates miR-124-induced activation of Wnt/β-catenin signaling in spinal cord neural progenitor cells. Stem Cell Res Ther. 2019;10(1):400. [5] DING L, FU WJ, DI HY, et al. Expression of long non-coding RNAs in complete transection spinal cord injury: a transcriptomic analysis. Neural Regen Res. 2020; 15(8):1560-1567. [6] MA K, XU H, ZHANG J, et al. Insulin-like growth factor-1 enhances neuroprotective effects of neural stem cell exosomes after spinal cord injury via an miR-219a-2-3p/YY1 mechanism. Aging (Albany NY). 2019;11(24):12278-12294. [7] YANG R, CAI X, LI J, et al. Protective effects of miR-129-5p on acute spinal cord injury rats. Med Sci Monit. 2019;25:8281-8288. [8] LIU J, WU Y. Electro-acupuncture-modulated miR-214 prevents neuronal apoptosis by targeting Bax and inhibits sodium channel Nav1.3 expression in rats after spinal cord injury. Biomed Pharmacother. 2017;89:1125-1135. [9] HUANG W, LIN M, YANG C, et al. Rat bone mesenchymal stem cell-derived exosomes loaded with miR-494 promoting neurofilament regeneration and behavioral function recovery after spinal cord injury. Oxid Med Cell Longev. 2021;2021:1634917. [10] LIU R, WANG W, WANG S, et al. microRNA-21 regulates astrocytic reaction post-acute phase of spinal cord injury through modulating TGF-β signaling. Aging (Albany NY). 2018;10(6):1474-1488. [11] SAKER D, SENCAR L, YILMAZ DM, et al. Relationships between microRNA-20a and microRNA-125b expression and apoptosis and inflammation in experimental spinal cord injury. Neurol Res. 2019; 41(11):991-1000. [12] SOBRIDO-CAMEAN D, BARREIRO-IGLESIAS A. Role of caspase-8 and Fas in cell death after spinal cord injury. Front Mol Neurosci. 2018;11:101. [13] AN Y, LI J, YUAN Q, et al. MicroRNA-466c-3p exerts protective effect on neuronal apoptosis and improves functional recovery post spinal cord injury via mitochondrial apoptotic pathway. AMB Express. 2020;10(1):113. [14] QIAN Z, CHANG J, JIANG F, et al. Excess administration of miR-340-5p ameliorates spinal cord injury-induced neuroinflammation and apoptosis by modulating the P38-MAPK signaling pathway. Brain Behav Immun. 2020;87:531-542. [15] ZHANG XM, ZENG LN, YANG WY, et al. Inhibition of LncRNA Vof-16 expression promotes nerve regeneration and functional recovery after spinal cord injury. Neural Regen Res. 2022;17(1):217-227. [16] SHAO Z, LV G, WEN P, et al. Silencing of PHLPP1 promotes neuronal apoptosis and inhibits functional recovery after spinal cord injury in mice. Life Sci. 2018;209:291-299. [17] WANG X, SU X, GONG F, et al. MicroRNA-30c abrogation protects against spinal cord ischemia reperfusion injury through modulating SIRT1. Eur J Pharmacol. 2019;851:80-87. [18] CHEN XB, WANG ZL, YANG QY, et al. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis. Int J Mol Sci. 2018; 19(8):2274. [19] HUANG J, WU C, XU G, et al. The decreased expression of miR-429 in plasma exosomes after spinal cord injury inhibits neuronal apoptosis by mediating the PTEN/PI3K/Akt pathway. Ann Transl Med. 2022;10(1):6. [20] HUANG T, JIA Z, FANG L, et al. Extracellular vesicle-derived miR-511-3p from hypoxia preconditioned adipose mesenchymal stem cells ameliorates spinal cord injury through the TRAF6/S1P axis. Brain Res Bull. 2022;180:73-85. [21] XIAO X, LI W, XU Z, et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells reduce lipopolysaccharide-induced spinal cord injury neuronal apoptosis by mediating miR-29b-3p/PTEN. Connect Tissue Res. 2022; 63(6):634-649. [22] WANG Y, YUAN Y, GAO Y, et al. MicroRNA-31 regulating apoptosis by mediating the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in treatment of spinal cord injury. Brain Dev. 2019;41(8):649-661. [23] ZHOU X, CHEN J, ZHANG H, et al. MicroRNA-23b attenuates the H2O2-induced injury of microglial cells via TAB3/NF-κB signaling pathway. Int J Clin Exp Pathol. 2018;11(12):5765-5773. [24] WANG F, LI J, ZHAO Y, et al. miR-672-3p promotes functional recovery in rats with contusive spinal cord injury by inhibiting ferroptosis suppressor protein 1. Oxid Med Cell Longev. 2022;2022:6041612. [25] WANG C, GUO X, WANG Y, et al. Silencing of miR-324-5p alleviates rat spinal cord injury by Sirt1. Neurosci Res. 2021;173:34-43. [26] CHEN J, QIN R. MicroRNA‑138‑5p regulates the development of spinal cord injury by targeting SIRT1. Mol Med Rep. 2020;22(1):328-336. [27] YAO L, GUO Y, WANG L, et al. Knockdown of miR-130a-3p alleviates spinal cord injury induced neuropathic pain by activating IGF-1/IGF-1R pathway. J Neuroimmunol. 2021;351:577458. [28] ZHAO QC, XU ZW, PENG QM, et al. Enhancement of miR-16-5p on spinal cord injury-induced neuron apoptosis and inflammatory response through inactivating ERK1/2 pathway. J Neurosurg Sci. 2020. doi: 10.23736/S0390-5616.20.04880-8. [29] WANG H, YUAN J, DANG X, et al. Mettl14-mediated m6A modification modulates neuron apoptosis during the repair of spinal cord injury by regulating the transformation from pri-mir-375 to miR-375. Cell Biosci. 2021;11(1):52. [30] LI J, LI L, SHEN Y. Protective role of microRNA-219-5p inhibitor against spinal cord injury via liver receptor homolog-1/Wnt/β-catenin signaling pathway regulation. Exp Ther Med. 2018;15(4):3563-3569. [31] XU Z, ZHANG K, WANG Q, et al. MicroRNA‑124 improves functional recovery and suppresses Bax‑dependent apoptosis in rats following spinal cord injury. Mol Med Rep. 2019;19(4):2551-2560. [32] ZHENG J, KUANG J, ZHANG X, et al. miR-142-3p suppresses apoptosis in spinal cord-injured rats. Transl Neurosci. 2020;11(1):105-115. [33] ZHOU Q, FENG X, YE F, et al. miR-27a promotion resulting from silencing of HDAC3 facilitates the recovery of spinal cord injury by inhibiting PAK6 expression in rats. Life Sci. 2020;260:118098. [34] ZHANG H, PIAO M, GUO M, et al. MicroRNA-211-5p attenuates spinal cord injury via targeting of activating transcription factor 6. Tissue Cell. 2021;68:101459. [35] ZHANG Y, WANG S, LI H, et al. miR-495 reduces neuronal cell apoptosis and relieves acute spinal cord injury through inhibiting PRDM5. J Mol Histol. 2021; 52(2):385-396. [36] ZHANG X, GUO H, XIE A, et al. microRNA-331-3p attenuates neuropathic pain following spinal cord injury via targeting RAP1A. J Biol Regul Homeost Agents. 2020;34(1):25-37. [37] HU Y, LIU Q, ZHANG M, et al. MicroRNA-362-3p attenuates motor deficit following spinal cord injury via targeting paired box gene 2. J Integr Neurosci. 2019;18(1):57-64. [38] ZHANG Z, SHEN L, YAN Y. MiR-139-5p alleviates neural cell apoptosis induced by spinal cord injury through targeting TRAF3. Acta Biochim Pol. 2020;67(3):359-365. [39] LIU R, PENG Z, ZHANG Y, et al. Upregulation of miR-128 inhibits neuronal cell apoptosis following spinal cord injury via FasL downregulation by repressing ULK1. Mol Med Rep. 2021;24(3):667. [40] WU WD, WANG LH, WEI NX, et al. MicroRNA-15a inhibits inflammatory response and apoptosis after spinal cord injury via targeting STAT3. Eur Rev Med Pharmacol Sci. 2019;23(21):9189-9198. [41] HE Y, LV B, HUAN Y, et al. Zhenbao pill protects against acute spinal cord injury via miR-146a-5p regulating the expression of GPR17. Biosci Rep. 2018;38(1): BSR20171132. [42] LI XH, FU NS, XING ZM. MiR-100 suppresses inflammatory activation of microglia and neuronal apoptosis following spinal cord injury via TLR4/NF-κB pathway. Eur Rev Med Pharmacol Sci. 2019;23(20):8713-8720. [43] NIU F, PAN S. MicroRNA-488 inhibits neural inflammation and apoptosis in spinal cord injury through restraint on the HMGB1/TLR4/NF-κB signaling pathway. Neuroreport. 2021;32(12):1017-1026. [44] WAN G, AN Y, TAO J, et al. MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep. 2020;40(3):BSR20193315. [45] WANG D, ZHAO S, PAN J, et al. Ginsenoside Rb1 attenuates microglia activation to improve spinal cord injury via microRNA-130b-5p/TLR4/NF-κB axis. J Cell Physiol. 2021;236(3):2144-2155. [46] FEI M, LI Z, CAO Y, et al. MicroRNA-182 improves spinal cord injury in mice by modulating apoptosis and the inflammatory response via IKKβ/NF-κB. Lab Invest. 2021;101(9):1238-1253. [47] DING LZ, XU J, YUAN C, et al. MiR-7a ameliorates spinal cord injury by inhibiting neuronal apoptosis and oxidative stress. Eur Rev Med Pharmacol Sci. 2020;24(1): 11-17. [48] LV X, LIANG J, WANG Z. MiR-21-5p reduces apoptosis and inflammation in rats with spinal cord injury through PI3K/AKT pathway. Panminerva Med. 2020. doi: 10.23736/S0031-0808.20.03974-9. [49] XIAO X, LI W, RONG D, et al. Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov. 2021;7(1):212. [50] HE S, WANG Z, LI Y, et al. MicroRNA-92a-3p enhances functional recovery and suppresses apoptosis after spinal cord injury via targeting phosphatase and tensin homolog. Biosci Rep. 2020;40(5):BSR20192743. [51] SHEN J, GAO F, ZHAO L, et al. MicroRNA-34c promotes neuronal recovery in rats with spinal cord injury through the C-X-C motif ligand 14/Janus kinase 2/signal transducer and activator of transcription-3 axis. Chin Med J (Engl). 2020; 133(18):2177-2185. [52] DAI J, XU LJ, HAN GD, et al. MicroRNA-125b promotes the regeneration and repair of spinal cord injury through regulation of JAK/STAT pathway. Eur Rev Med Pharmacol Sci. 2018;22(3):582-589. [53] ZHAO K, LI R, RUAN Q, et al. microRNA-125b and its downstream Smurf1/KLF2/ATF2 axis as important promoters on neurological function recovery in rats with spinal cord injury. J Cell Mol Med. 2021;25(13):5924-5939. [54] JIAN YP, DONG SJ, XU SS, et al. MicroRNA-34a suppresses neuronal apoptosis and alleviates microglia inflammation by negatively targeting the Notch pathway in spinal cord injury. Eur Rev Med Pharmacol Sci. 2020;24(3):1420-1427. [55] LI W, ZHANG Y, LV J, et al. MicroRNA-137-mediated lysine demethylase 4A regulates the recovery of spinal cord injury via the SFRP4-Wnt/β-Catenin axis. Int J Neurosci. 2021. doi: 10.1080/00207454.2021.1881093. [56] JIA X, HUANG G, WANG S, et al. Extracellular vesicles derived from mesenchymal stem cells containing microRNA-381 protect against spinal cord injury in a rat model via the BRD4/WNT5A axis. Bone Joint Res. 2021;10(5):328-339. [57] CHEN M, LAI X, WANG X, et al. Long non-coding RNAs and circular RNAs: insights into microglia and astrocyte mediated neurological diseases. Front Mol Neurosci. 2021;14:745066. [58] XIA X, NIU H, MA Y, et al. LncRNA CCAT1 protects astrocytes against OGD/R-induced damage by targeting the miR-218/NFAT5-signaling axis. Cell Mol Neurobiol. 2020;40(8):1383-1393. [59] BAN Y, CUI C. Silencing of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) protects PC-12 cells from lps-induced injury via targeting miR-29a. Med Sci Monit. 2020;26:e923914. [60] HE X, ZHANG J, GUO Y, et al. LncRNA MIAT promotes spinal cord injury recovery in rats by regulating RBFOX2-mediated alternative splicing of MCL-1. Mol Neurobiol. 2022;59(8):4854-4868. [61] BAI G, JIANG L, Meng P, et al. LncRNA neat1 promotes regeneration after spinal cord injury by targeting miR-29b. J Mol Neurosci. 2021;71(6):1174-1184. [62] WANG J, ZHAO Y, TANG Y, et al. The role of lncRNA-MEG/miR-21-5p/PDCD4 axis in spinal cord injury. Am J Transl Res. 2021;13(2):646-658. [63] GUO X, CHEN H, LI S, et al. Long non-coding RNA MALAT1 promotes neuronal apoptosis during spinal cord injury through miR-199a-5p/PRDM5 axis. Turk Neurosurg. 2021. doi: 10.5137/1019-5149.JTN.36175-21.5. [64] ZHANG H, LI D, ZHANG Y, et al. Knockdown of lncRNA BDNF-AS suppresses neuronal cell apoptosis via downregulating miR-130b-5p target gene PRDM5 in acute spinal cord injury. RNA Biol. 2018;15(8):1071-1080. [65] WANG F, CHANG S, LI J, et al. Lithium alleviated spinal cord injury (SCI)-induced apoptosis and inflammation in rats via BDNF-AS/miR-9-5p axis. Cell Tissue Res. 2021;384(2):301-312. [66] LI X, QIAN Y, TANG K, et al. Inhibition of lncRNA H19/miR-370-3p pathway mitigates neuronal apoptosis in an in vitro model of spinal cord injury (SCI). Transl Neurosci. 2021;12(1):103-113. [67] ZHANG T, LI K, ZHANG ZL, et al. LncRNA Airsci increases the inflammatory response after spinal cord injury in rats through the nuclear factor kappa B signaling pathway. Neural Regen Res. 2021;16(4):772-777. [68] YE K, YU J, LI L, et al. Microvesicles from schwann-like cells as a new biomaterial promote axonal growth. J Biomed Nanotechnol. 2021;17(2):291-302. [69] WANG Z, SONG Y, HAN X, et al. Long noncoding RNA PTENP1 affects the recovery of spinal cord injury by regulating the expression of miR-19b and miR-21. J Cell Physiol. 2020;235(4):3634-3645. [70] CAO Y, JIANG C, LIN H, et al. Silencing of long noncoding RNA growth arrest-specific 5 alleviates neuronal cell apoptosis and inflammatory responses through sponging microRNA-93 to repress PTEN expression in spinal cord injury. Front Cell Neurosci. 2021;15:646788. [71] CHEN Y, WEI Z, LIU J, et al. Long noncoding RNA ZFAS1 aggravates spinal cord injury by binding with miR-1953 and regulating the PTEN/PI3K/AKT pathway. Neurochem Int. 2021;147:104977. [72] LI D, YANG T, SHAO C, et al. LncRNA MIAT activates vascular endothelial growth factor A through RAD21 to promote nerve injury repair in acute spinal cord injury. Mol Cell Endocrinol. 2021;528:111244. [73] ZHANG H, WANG W, LI N, et al. LncRNA DGCR5 suppresses neuronal apoptosis to improve acute spinal cord injury through targeting PRDM5. Cell Cycle. 2018; 17(16):1992-2000. [74] REN XD, WAN CX, NIU YL. Overexpression of lncRNA TCTN2 protects neurons from apoptosis by enhancing cell autophagy in spinal cord injury. FEBS Open Bio. 2019;9(7):1223-1231. [75] LIU J, LIN M, QIAO F, et al. Exosomes derived from lncRNA TCTN2-modified mesenchymal stem cells improve spinal cord injury by miR-329-3p/IGF1R axis. J Mol Neurosci. 2022;72(3):482-495. [76] QI J, WANG T, ZHANG Z, et al. Circ-ctnnb1 regulates neuronal injury in spinal cord injury through the Wnt/β-catenin signaling pathway. Dev Neurosci. 2022; 44(3):131-141. [77] BAN D, XIANG Z, YU P, et al. Circular RNA hecw1 regulates the inflammatory imbalance in spinal cord injury via miR-3551-3p/LRRTM1 axis. Appl Biochem Biotechnol. 2022;194(11):5151-5166. [78] TIAN F, YANG J, XIA R. Exosomes secreted from circZFHX3-modified mesenchymal stem cells repaired spinal cord injury through mir-16-5p/IGF-1 in mice. Neurochem Res. 2022;47(7):2076-2089. [79] ZHANG L, LI Z, MAO L, et al. Circular RNA in acute central nervous system injuries: a new target for therapeutic intervention. Front Mol Neurosci. 2022;15:816182. [80] CHEN J, FU B, BAO J, et al. Novel circular RNA 2960 contributes to secondary damage of spinal cord injury by sponging miRNA-124. J Comp Neurol. 2021; 529(7):1456-1464. [81] YAO Y, ZHANG X, XU J, et al. circ_014260/miR-384/THBS1 aggravates spinal cord injury in rats by promoting neuronal apoptosis and endoplasmic reticulum stress. Am J Transl Res. 2022;14(1):518-533. [82] GUO K, CHANG Y, JIN Y, et al. circ-Ncam2 (mmu_circ_0006413) Participates in LPS-induced microglia activation and neuronal apoptosis via the TLR4/NF-κB pathway. J Mol Neurosci. 2022;72(8):1738-1748. [83] YAO Y, WANG J, HE T, et al. Microarray assay of circular RNAs reveals cicRNA.7079 as a new anti-apoptotic molecule in spinal cord injury in mice. Brain Res Bull. 2020;164:157-171. [84] SUN Y, ZHOU Y, SHI X, et al. CircTYW1 serves as a sponge for microRNA-380 in accelerating neurological recovery following spinal cord injury via regulating FGF9. Cell Cycle. 2021;20(18):1828-1844. [85] LIU Y, AO S, ZHANG H, et al. Circ_HIPK3 alleviates CoCl2-induced apoptotic injury in neuronal cells by depending on the regulation of the miR-222-3p/DUSP19 axis. Biochem Biophys Res Commun. 2021;553:126-133. [86] YIN X, ZHENG W, HE L, et al. CircHIPK3 alleviates inflammatory response and neuronal apoptosis via regulating miR-382-5p/DUSP1 axis in spinal cord injury. Transpl Immunol. 2022;73:101612. [87] ZHAO J, QI X, BAI J, et al. A circRNA derived from linear HIPK3 relieves the neuronal cell apoptosis in spinal cord injury via ceRNA pattern. Biochem Biophys Res Commun. 2020;528(2):359-367. |
[1] | 郭淑慧, 杨晔, 江杨洋, 许建文. 神经源性膀胱miRNA-mRNA调控网络的筛选与验证[J]. 中国组织工程研究, 2023, 27(在线): 1-8. |
[2] | 潘钟杰, 秦志鸿, 郑铁军, 丁晓飞, 廖世杰. 股骨头坏死发病机制中非编码RNA的靶标性[J]. 中国组织工程研究, 2023, 27(9): 1441-1447. |
[3] | 党 祎, 杜成砚, 姚红林, 袁能华, 曹 金, 熊 山, 张顶梅, 王 信. 激素型骨坏死与氧化应激[J]. 中国组织工程研究, 2023, 27(9): 1469-1476. |
[4] | 赵 璐, 赵逸菲, 高 达, 刘艳芳, 付婷婷, 徐江雁. Zeste基因抑制子基因12在糖尿病肾脏病模型大鼠肾组织中的表达[J]. 中国组织工程研究, 2023, 27(8): 1179-1186. |
[5] | 杨九杰, 李 治, 王树杰, 田 野, 赵 伟. 神经电生理监测硬脊膜切开减压治疗急性脊髓损伤过程中脊髓的功能变化[J]. 中国组织工程研究, 2023, 27(8): 1232-1236. |
[6] | 聂晨晨, 苏凯奇, 高 静, 凡勇福, 阮晓迪, 袁 洁, 段昭远, 冯晓东. 环状RNA调控脑缺血发病的作用与机制[J]. 中国组织工程研究, 2023, 27(8): 1286-1291. |
[7] | 李欣悦, 李熙恒, 毛天娇, 唐 亮, 李 江. 三维培养人牙周膜干细胞的形态、活性及成骨分化能力[J]. 中国组织工程研究, 2023, 27(6): 846-852. |
[8] | 袁 维, 刘静东, 徐广辉, 康 健, 李富平, 王英杰, 支中正, 李冠武. 人血管周围干细胞成骨分化及Wnt/β-catenin信号通路的调控[J]. 中国组织工程研究, 2023, 27(6): 866-871. |
[9] | 廖益东, 明 江, 宋文学, 王梓力, 张 宇, 廖一飞, 徐卡娅, 杨 华. 一种同时培养原代皮质及海马神经元的实验方法[J]. 中国组织工程研究, 2023, 27(6): 897-902. |
[10] | 郝柳芳, 段红梅, 王子珏, 郝 飞, 郝 鹏, 赵 文, 高钰丹, 杨朝阳, 李晓光. 转基因小鼠脊髓损伤后室管膜细胞的时空动态变化[J]. 中国组织工程研究, 2023, 27(6): 883-889. |
[11] | 李晓寅, 杨晓青, 陈淑莲, 李正超, 王梓琪, 宋 震, 朱达仁, 陈旭义. 胶原/丝素蛋白支架联合神经干细胞治疗创伤性脊髓损伤[J]. 中国组织工程研究, 2023, 27(6): 890-896. |
[12] | 张岐剑, 徐希明. 外胚层间充质干细胞的获取及应用[J]. 中国组织工程研究, 2023, 27(6): 928-934. |
[13] | 袁 博, 谢利德, 付秀美. 许旺细胞源性外泌体促进损伤周围神经的修复与再生[J]. 中国组织工程研究, 2023, 27(6): 935-940. |
[14] | 张 晴, 高春兰, 于飞飞, 张正皓, 马 芳, 高 源, 李桂忠, 姜怡邓, 马胜超. 同型半胱氨酸致胰岛β细胞凋亡中肝配蛋白A型受体2 DNA甲基化升高[J]. 中国组织工程研究, 2023, 27(5): 714-719. |
[15] | 李志超, 谭国庆, 苏 辉, 徐展望, 薛海鹏. 非编码RNAs作为潜在治疗靶点在脊髓损伤中的调控效应[J]. 中国组织工程研究, 2023, 27(5): 758-764. |
1.1 资料来源
1.1.1 检索人及检索时间 由第一作者在2022年8月完成文献检索。
1.1.2 检索数据库 PubMed数据库。
1.1.3 检索词 以“microRNA,miR,lncRNA,circRNA,noncoding RNA,RNA,SCI,spinal cord injury,spinal cord,apoptosis”为检索词进行检索。
1.1.4 检索时间范围 检索时间从PubMed数据库建库至2022年8月。
1.1.5 文献检索策略 见图1。
1.1.6 检索文献量 初步检索到458篇相关文献。
1.2 入组标准
1.2.1 纳入标准 ①非编码RNA调控脊髓损伤后神经元细胞凋亡的相关文献;②研究严谨且结论明确的文献;③能反映该领域近几年相关热点的文献。
1.2.2 排除标准 ①重复性文献;②与此综述相关性较差的文
献;③相对陈旧的研究文献;④对该研究参考价值较低的文献。
1.3 文献质量评估和数据的提取 共检索到458篇相关文献,阅读文题摘要后依据纳排标准筛选检索到的文献,剔除重复和不相关文献,最后共纳入文献87篇进行归纳整理与综述,资料提取的方法使用独立提取法。文献检索及筛选流程见图2。
#br#
文题释义:
非编码RNA:由microRNA (miRNA)、长链非编码RNA(lncRNA)和环状RNA(circRNA)等组成,是一类不编码蛋白质的RNA。现有研究发现脊髓损伤后,与神经元细胞凋亡相关的非编码RNA出现显著差异性表达,调控特定非编码RNA的表达,可抑制脊髓损伤后神经元细胞凋亡。中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
脊髓损伤是一种高致残性和高死亡率的中枢神经系统疾病,危害严重、发病率不断攀升。脊髓损伤的原因众多,临床多以创伤为主。脊髓损伤分为原发和继发性损伤,外力创伤瞬间直接作用于脊髓导致原发性损伤,原发损伤发生后,以炎症、氧化应激、自噬和凋亡等因素造成广泛而严重的继发性损伤,导致运动和感觉等神经功能不可逆受损。脊髓损伤的治疗一直是临床难题,目前临床常用的治疗方法如手术、糖皮质激素、各种神经营养因子、物理康复治疗等仍未取得突破性进展。脊髓损伤后神经元凋亡缺失是脊髓功能不可逆受损的一个重要因素,因此探索防止脊髓损伤后神经元凋亡的方法意义重大。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||