[1] MA YH, ZENG X, QIU XC, et al. Perineurium-like sheath derived from long-term surviving mesenchymal stem cells confers nerve protection to the injured spinal cord. Biomaterials. 2018;160:37-55.
[2] JI W, JIANG W, LI M, et al. miR-21 deficiency contributes to the impaired protective effects of obese rat mesenchymal stem cell-derived exosomes against spinal cord injury. Biochimie. 2019;167:171-178.
[3] RUZICKA J, URDZIKOVA LM, KLOUDOVA A, et al. Anti-inflammatory compound curcumin and mesenchymal stem cells in the treatment of spinal cord injury in rats. Acta Neurobiol Exp (Wars). 2018;78(4):358-374.
[4] FRIEDENSTEIN AJ, CHAILAKHYAN RK, GERASIMOV UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20(3):263-272.
[5] ASSINCK P, DUNCAN GJ, HILTON BJ, et al. Cell transplantation therapy for spinal cord injury. Nat Neurosci. 2017;20(5):637-647.
[6] TAKAHASHI A, NAKAJIMA H, UCHIDA K,et al. Comparison of Mesenchymal Stromal Cells Isolated from Murine Adipose Tissue and Bone Marrow in the Treatment of Spinal Cord Injury. Cell Transplant. 2018;27(7):1126-1139.
[7] 万然,史旭,刘京松,等.间充质干细胞分泌组治疗脊髓损伤的研究进展[J].中国组织工程研究,2021,25(7):1088-1095.
[8] ZHOU T, ZHENG Y, SUN L, et al. Microvascular endothelial cells engulf myelin debris and promote macrophage recruitment and fibrosis after neural injury. Nat Neurosci. 2019;22(3):421-435.
[9] LIU W, WANG Y, GONG F, et al. Exosomes Derived from Bone Mesenchymal Stem Cells Repair Traumatic Spinal Cord Injury by Suppressing the Activation of A1 Neurotoxic Reactive Astrocytes. J Neurotrauma. 2019;36(3):469-484.
[10] YU T, ZHAO C, HOU S, et al. Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Braz J Med Biol Res. 2019;52(12):e8735.
[11] CIZKOVA D, MURGOCI AN, CUBINKOVA V, et al. Spinal Cord Injury: Animal Models, Imaging Tools and the Treatment Strategies. Neurochem Res. 2020; 45(1):134-143.
[12] AN H, LI Q, WEN J. Bone marrow mesenchymal stem cells encapsulated thermal-responsive hydrogel network bridges combined photo-plasmonic nanoparticulate system for the treatment of urinary bladder dysfunction after spinal cord injury. J Photochem Photobiol B. 2020;203:111741.
[13] RITFELD GJ, PATEL A, CHOU A, et al. The role of brain-derived neurotrophic factor in bone marrow stromal cell-mediated spinal cord repair. Cell Transplant. 2015;24(11):2209-2220.
[14] ZHANG T, LIU C, CHI L. Suppression of miR-10a-5p in bone marrow mesenchymal stem cells enhances the therapeutic effect on spinal cord injury via BDNF. Neurosci Lett. 2020;714:134562.
[15] NAKAJIMA H, UCHIDA K, GUERRERO AR, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma. 2012;29(8):1614-1625.
[16] GUO S, PERETS N, BETZER O, et al. Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury. ACS Nano. 2019;13(9):10015-10028.
[17] CHEN Y, LIAN XH, LIAO LY, et al. Transplantation of bone marrow mesenchymal stem cells alleviates spinal cord injury via inhibiting Notch signaling. Eur Rev Med Pharmacol Sci. 2019;23(3 Suppl):31-38.
[18] KADOYA K, LU P, NGUYEN K, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med. 2016; 22(5):479-487.
[19] LI L, XIAO B, MU J, et al. A MnO2 Nanoparticle-Dotted Hydrogel Promotes Spinal Cord Repair via Regulating Reactive Oxygen Species Microenvironment and Synergizing with Mesenchymal Stem Cells. ACS Nano. 2019;13(12):14283-14293.
[20] JÄKEL S, AGIRRE E, MENDANHA FALCÃO A, et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature. 2019;566(7745): 543-547.
[21] HAWRYLUK GW, SPANO S, CHEW D, et al. An examination of the mechanisms by which neural precursors augment recovery following spinal cord injury: a key role for remyelination. Cell Transplant. 2014;23(3):365-380.
[22] BORKOWSKA P, KOWALSKA J, FILA-DANILOW A, et al. Affect of antidepressants on the in vitro differentiation of rat bone marrow mesenchymal stem cells into neuronal cells. Eur J Pharm Sci. 2015;73:81-87.
[23] 严珺,王永杰,孟春阳,等.锌对大鼠骨髓间充质干细胞增殖与向神经样细胞分化的影响[J].中国实验诊断学,2016,20(7):1045-1048.
[24] YANG W, YANG Y, YANG JY, et al. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37(4):1075-1082.
[25] LIU J, CHEN J, LIU B, et al. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. J Neurol Sci. 2013;325(1-2):127-136.
[26] ASSUNÇÃO-SILVA RC, GOMES ED, SOUSA N, et al. Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells Int. 2015;2015:948040.
[27] LI C, JIAO G, WU W, et al. Exosomes from Bone Marrow Mesenchymal Stem Cells Inhibit Neuronal Apoptosis and Promote Motor Function Recovery via the Wnt/β-catenin Signaling Pathway. Cell Transplant. 2019;28(11):1373-1383.
[28] HAN S, WANG B, LI X, et al. Bone marrow-derived mesenchymal stem cells in three-dimensional culture promote neuronal regeneration by neurotrophic protection and immunomodulation. J Biomed Mater Res A. 2016;104(7):1759-1769.
[29] LI LM, HAN M, JIANG XC, et al. Peptide-Tethered Hydrogel Scaffold Promotes Recovery from Spinal Cord Transection via Synergism with Mesenchymal Stem Cells. ACS Appl Mater Interfaces. 2017;9(4):3330-3342.
[30] CARON I, ROSSI F, PAPA S, et al. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials. 2016;75:135-147.
[31] RAYNALD, SHU B, LIU XB, et al. Polypyrrole/polylactic acid nanofibrous scaffold cotransplanted with bone marrow stromal cells promotes the functional recovery of spinal cord injury in rats. CNS Neurosci Ther. 2019; 25(9):951-964.
[32] HA XQ, YANG B, HOU HJ, et al. Protective effect of rhodioloside and bone marrow mesenchymal stem cells infected with HIF-1-expressing adenovirus on acute spinal cord injury. Neural Regen Res. 2020;15(4):690-696.
[33] HAN X, CHEN Y, LIU Y, et al. HIF-1α promotes bone marrow stromal cell migration to the injury site and enhances functional recovery after spinal cord injury in rats. J Gene Med. 2018;20(12):e3062.
[34] VIDAL PM, ULNDREAJ A, BADNER A, et al. Methylprednisolone treatment enhances early recovery following surgical decompression for degenerative cervical myelopathy without compromise to the systemic immune system. J Neuroinflammation. 2018; 15(1):222.
[35] WANG X, YE L, ZHANG K, et al. Upregulation of microRNA-200a in bone marrow mesenchymal stem cells enhances the repair of spinal cord injury in rats by reducing oxidative stress and regulating Keap1/Nrf2 pathway. Artif Organs. 2020; 44(7):744-752.
[36] OKUDA A, HORII-HAYASHI N, SASAGAWA T, et al. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats. J Neurosurg Spine. 2017;26(3):388-395.
[37] ZHANG XM, MA J, SUN Y, et al. Tanshinone IIA promotes the differentiation of bone marrow mesenchymal stem cells into neuronal-like cells in a spinal cord injury model. J Transl Med. 2018;16(1):193.
[38] TORRES-ESPÍN A, REDONDO-CASTRO E, HERNANDEZ J, et al. Immunosuppression of allogenic mesenchymal stem cells transplantation after spinal cord injury improves graft survival and beneficial outcomes. J Neurotrauma. 2015;32(6):367-380.
[39] 杨新明,杜雅坤,石蔚,等.丙戊酸联合骨髓间充质干细胞修复大鼠急性脊髓损伤可行性及其机制研究[J].中华解剖与临床杂志,2017,22(5): 407-415.
[40] 兰静,闫金玉,夏润福,等.口服肉苁蓉联合骨髓间充质干细胞移植治疗大鼠脊髓损伤[J].中国组织工程研究,2014,18(41):6639-6644.
[41] HU Y, LI X, HUANG G, et al. Fasudil may induce the differentiation of bone marrow mesenchymal stem cells into neuron‑like cells via the Wnt/β‑catenin pathway. Mol Med Rep. 2019;19(4):3095-3104.
[42] YANG P, CHEN A, QIN Y, et al. Buyang huanwu decoction combined with BMSCs transplantation promotes recovery after spinal cord injury by rescuing axotomized red nucleus neurons. J Ethnopharmacol. 2019;228:123-131.
[43] 詹吉恒,栾继耀,罗丹,等.虎杖苷促进骨髓间充质干细胞向神经元样细胞分化治疗脊髓损伤机制[J].中华中医药杂志,2020,35(5):2628-2633.
[44] GRANSEE HM, ZHAN WZ, SIECK GC, et al. Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury. J Neurotrauma. 2015;32(3):185-193.
[45] YI XM, CHEN Y, TU GJ. Neuregulin‑1 impacting bone marrow mesenchymal stem cell migration is conducive to functional recovery following spinal cord injury. Mol Med Rep. 2019;20(1):41-48.
[46] LV C, ZHANG T, LI K, et al. Bone marrow mesenchymal stem cells improve spinal function of spinal cord injury in rats via TGF-β/Smads signaling pathway. Exp Ther Med. 2020;19(6):3657-3663.
[47] 文远超,余云湖,王波,等.骨髓间充质干细胞与硫酸软骨素酶ABC联合移植对大鼠脊髓损伤的修复作用及其机制[J].山东医药,2018,58(11):13-17.
[48] TORRES-ESPÍN A, REDONDO-CASTRO E, HERNÁNDEZ J, et al. Bone marrow mesenchymal stromal cells and olfactory ensheathing cells transplantation after spinal cord injury--a morphological and functional comparison in rats. Eur J Neurosci. 2014;39(10):1704-1717.
[49] WU S, CUI G, SHAO H, et al. The Cotransplantation of Olfactory Ensheathing Cells with Bone Marrow Mesenchymal Stem Cells Exerts Antiapoptotic Effects in Adult Rats after Spinal Cord Injury. Stem Cells Int. 2015;2015:516215.
[50] XIAO Z, TANG F, ZHAO Y, et al. Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells. Cell Transplant. 2018;27(6):907-915.
[51] 杨新利,栾春红,汪永华.电针联合BMSCs移植对脊髓损伤大鼠模型炎症反应和损伤组织神经营养因子表达水平的影响[J].四川中医,2018, 36(11):51-55.
[52] 李云,陈波,吴咏德,等.步行训练联合BMSCs移植对脊髓损伤模型大鼠神经和运动功能修复的影响[J].临床和实验医学杂志,2018,17(24): 2587-2591.
[53] 曾园山.电针督脉经穴联合成体干细胞移植策略在修复脊髓损伤中的研究进展[J].中山大学学报(医学科学版),2017,38(6): 801-807,847.
[54] GENG CK, CAO HH, YING X, et al. Effect of mesenchymal stem cells transplantation combining with hyperbaric oxygen therapy on rehabilitation of rat spinal cord injury. Asian Pac J Trop Med. 2015;8(6):468-473.
[55] YIN YM, LU Y, ZHANG LX, et al. Bone marrow stromal cells transplantation combined with ultrashortwave therapy promotes functional recovery on spinal cord injury in rats. Synapse. 2015;69(3):139-147.
[56] COFANO F, BOIDO M, MONTICELLI M, et al. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy. Int J Mol Sci. 2019;20(11):2698.
[57] SHAO A, TU S, LU J, et al. Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Res Ther. 2019;10(1):238.
[58] MENDONÇA MV, LAROCCA TF, DE FREITAS SOUZA BS, et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res Ther. 2014;5(6):126.
[59] SATTI HS, WAHEED A, AHMED P, et al. Autologous mesenchymal stromal cell transplantation for spinal cord injury: A Phase I pilot study. Cytotherapy. 2016;18(4): 518-522.
[60] AMR SM, GOUDA A, KOPTAN WT, et al. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: case series of 14 patients. J Spinal Cord Med. 2014;37(1):54-71.
[61] HU XC, LU YB, YANG YN, et al. Progress in clinical trials of cell transplantation for the treatment of spinal cord injury: how many questions remain unanswered? Neural Regen Res. 2021;16(3):405-413.
[62] LI X, ZHAN J, HOU Y, et al. Coenzyme Q10 Regulation of Apoptosis and Oxidative Stress in H2O2 Induced BMSC Death by Modulating the Nrf-2/NQO-1 Signaling Pathway and Its Application in a Model of Spinal Cord Injury. Oxid Med Cell Longev. 2019;2019:6493081.
[63] 方楚玲,田京. BMSCs成软骨分化的影响因素[J].中国临床解剖学杂志, 2014, 32(3):371-374.
[64] 钱晖,王兴忠,徐静,等.骨髓间质干细胞体内致瘤研究[C].杭州:第一届国际肿瘤干细胞学术会议论文集,2007:73.
[65] TSUMURAYA T, OHTAKI H, SONG D, et al. Human mesenchymal stem/stromal cells suppress spinal inflammation in mice with contribution of pituitary adenylate cyclase-activating polypeptide (PACAP). J Neuroinflammation. 2015;12:35.
[66] FARZANEH M, ANBIYAIEE A, KHOSHNAM SE. Human Pluripotent Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther. 2020;15(2):135-143.
|