[1] Capanema NSV,Mansur AAP,Carvalho SM,et al.Niobium-Doped Hydroxyapatite Bioceramics: Synthesis, Characterization and In Vitro Cytocompatibility. Materials(Basel).2015;8(7): 4191-4209.[2] Tamaddon M,Samizadeh S,Wang L,et al.Intrinsic Osteoinductivity of Porous Titanium Scaffold for Bone Tissue Engineering.Int J Biomater. 2017.2017:5093063.[3] Fuh LJ,Huang YJ,Chen WC,et al.Preparation of micro-porous bioceramic containing silicon-substituted hydroxyapatite and beta-tricalcium phosphate.Mater Sci Eng C Mater Biol Appl. 2017;75: 798-806.[4] Vollmer NL,Spear JR,Ayers RA.Antimicrobial activity and biologic potential of silver-substituted calcium phosphate constructs produced with self-propagating high-temperature synthesis.J Mater Sci Mater Med.2016;27(6):104.[5] Gomes S,Kaur A,Grenèche JM,et al.Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramics.Acta Biomater. 2017;50:78-88.[6] Blum C,Brückner T,Ewald A,et al.Mg:Ca ratio as regulating factor for osteoclastic in vitro resorption of struvite biocements. Mater Sci Eng C Mater Biol Appl. 2017;73:111-119.[7] Ke D,Dernell W,Bandyopadhyay A,et al.Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.J Biomed Mater Res B Appl Biomater. 2015;103(8):1549-1559.[8] Schumacher TC,Treccani L,Rezwan K.Effect of silica on porosity, strength, and toughness of pressureless sintered calcium phosphate–zirconia bioceramics.Biomed Mater. 2015;10(4):045020.[9] Denry I,Kuhn LT.Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.Dent Mater. 2016;32(1): 43-53.[10] Mbarki M,Sharrock P,Fiallo M,et al.Hydroxyapatite bioceramic with large porosity. Mater Sci Eng C Mater Biol Appl. 2017;76:985-990.[11] Yatongchai C,Placek LM,Curran DJ,et al.Investigating the addition of SiO2–CaO–ZnO–Na2O–TiO2 bioactive glass to hydroxyapatite: Characterization, mechanical properties and bioactivity. J Biomater Appl.2015;30(5):495-511.[12] Lindner M,Bergmann C,Telle R,et al.Calcium phosphate scaffolds mimicking the gradient architecture of native long bones.J Biomed Mater Res A.2014;102(10):3677-3684.[13] Philippart A,Boccaccini AR,Fleck C,et al.Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years.Expert Rev Med Devices.2015;12(1):93-111.[14] Duan S,Feng P,Gao C,et al.Microstructure Evolution and Mechanical Properties Improvement in Liquid-Phase-Sintered Hydroxyapatite by Laser Sintering.Materials(Basel). 2015;8(3):1162-1175.[15] Yao MZ,Huang-Fu MY,Liu HN,et al.Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin. Int J Nanomedicine. 2016;11: 6181-6194.[16] Kunert-Keil C,Scholz F,Gedrange T,et al.Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study. Ann Anat.2015;199:79-84.[17] Xie L,Yu H,Deng Y,et al.Preparation, characterization and in vitro dissolution behavior of porous biphasic alpha/beta-tricalcium phosphate bioceramics. Mater Sci Eng C Mater Biol Appl. 2016;59: 1007-1015.[18] de Wild M,Amacher F,Bradbury CR,et al.Investigation of structural resorption behavior of biphasic bioceramics with help of gravimetry, muCT, SEM, and XRD.J Biomed Mater Res B Appl Biomater. 2016; 104(3):546-553.[19] Lu J,Descamps M,Dejou J,et al.The biodegradation mechanism of calcium phosphate biomaterials in bone.J Biomed Mater Res. 2002; 63(4):408-412.[20] Roldán JC,Klünter T,Schulz P,et al.Bone Morphogenetic Protein-7 Enhances Degradation of Osteoinductive Bioceramic Implants in an Ectopic Model. Plast Reconstr Surg Glob Open. 2017;5(6):e1375.[21] Bouler JM,Pilet P,Gauthier O,et al.Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response.Acta Biomater.2017;53:1-12.[22] Ghosh R,Sarkar R.Synthesis and characterization of sintered beta-tricalcium phosphate: A comparative study on the effect of preparation route.Mater Sci Eng C Mater Biol Appl. 2016;67:345-352.[23] Wang J,Chen Y,Zhu X,et al.Effect of phase composition on protein adsorption and osteoinduction of porous calcium phosphate ceramics in mice.J Biomed Mater Res A. 2014;102(12):4234-4243.[24] Despang F,Bernhardt A,Lode A,et al.Synthesis and physicochemical, in vitro and in vivo evaluation of an anisotropic, nanocrystalline hydroxyapatite bisque scaffold with parallel-aligned pores mimicking the microstructure of cortical bone.J Tissue Eng Regen Med. 2015; 9(12):E152-166.[25] Feng P,Deng Y,Duan S,et al.Liquid phase sintered ceramic bone scaffolds by combined laser and furnace.Int J Mol Sci. 2014;15(8): 14574-14590.[26] Civinini R,Capone A,Carulli C,et al.The kinetics of remodeling of a calcium sulfate/calcium phosphate bioceramic.J Mater Sci Mater Med.2017;28(9):137.[27] Rabadan-Ros R,VelásquezPA,Meseguer-Olmo L,et al.Morphological and Structural Study of a Novel Porous Nurse's A Ceramic with Osteoconductive Properties for Tissue Engineering. Materials (Basel). 2016;9(6).pii: E474. doi: 10.3390/ma9060474.[28] Sun H,Yang HL.Calcium phosphate scaffolds combined with bone morphogenetic proteins or mesenchymal stem cells in bone tissue engineering.Chin Med J (Engl). 2015;128(8):1121-1127.[29] Maté Sánchez de Val JE,Calvo-Guirado JL,Gómez-Moreno G,et al.Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part A: synthesis, characterization of the materials, and SEM analysis.Clin Oral Implants Res. 2016;27(11): 1331-1338.[30] Ros-Tárraga P, Mazón P, Rodríguez MA,et al.Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation. Materials(Basel). 2016;9(9).pii: E785. doi:10.3390/ma9090785. [31] Maji K,Dasgupta S,Kundu B,et al.Development of gelatin-chitosan- hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.J Biomater Sci Polym Ed.2015;26(16): 1190-1209.[32] Rustom LE,Boudou T,Lou S,et al.Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds.Acta Biomater.2016;44:144-154.[33] Bianchi M,Urquia Edreira ER,Wolke JG,et al.Substrate geometry directs the in vitro mineralization of calcium phosphate ceramics.Acta Biomater.2014;10(2):661-669.[34] Lobo SE,Glickman R,da Silva WN,et al.Response of stem cells from different origins to biphasic calcium phosphate bioceramics.Cell Tissue Res.2015;361(2):477-495.[35] Yu X,Tang X1,Gohil SV,et al.Biomaterials for Bone Regenerative Engineering.Adv Healthc Mater. 2015;4(9):1268-1285.[36] Roohani-Esfahani SI,No YJ,Lu Z,et al.A bioceramic with enhanced osteogenic properties to regulate the function of osteoblastic and osteocalastic cells for bone tissue regeneration. Biomed Mater.2016; 11(3):035018.[37] He F,Zhang J,Yang F,et al.In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials.Mater Sci Eng C Mater Biol Appl. 2015;50:257-265.[38] Cushnie EK,Ulery BD,Nelson SJ,et al.Simple Signaling Molecules for Inductive Bone Regenerative Engineering.PLoS One. 2014;9(7): e101627.[39] Harada N,Watanabe Y,Sato K,et al.Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. Biomaterials.2014;35(27):7800-7810.[40] Huang X,Bai S,Lu Q,et al.Osteoinductive-nanoscaled silk/HA composite scaffolds for bone tissue engineering application. J Biomed Mater Res B Appl Biomater.2015;103(7):1402-1414.[41] Tian J,Qi W,Zhang Y,et al.Bioaggregate Inhibits Osteoclast Differentiation, Fusion, and Bone Resorption In Vitro.J Endod. 2015; 41(9):1500-1506.[42] Tae Young A,Kang JH,Kang DJ,et al.Interaction of stem cells with nano hydroxyapatite-fucoidan bionanocomposites for bone tissue regeneration.Int J Biol Macromol. 2016;93(PtB):1488-1491.[43] Arcos D,Vallet-Regí M.Bioceramics for drug delivery.Acta Materialia. 2013;61(3):890-911.[44] Parent M,Baradari H,Champion E,et al.Design of calcium phosphate ceramics for drug delivery applications in bone diseases: A review of the parameters affecting the loading and release of the therapeutic substance.J Control Release. 2017;252:1-17.[45] Zhu M,Li K,Zhu Y,et al.3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy. Acta Biomater.2015;16:145-55.[46] Feng DS,Shi J,Wang XJ,et al.Hollow hybrid hydroxyapatite microparticles with sustained and pH-responsive drug delivery properties. RSC Adv.2013;3(47):24975.[47] Guimond-Lischer S,Ren Q,Braissant O,et al.Vacuum plasma sprayed coatings using ionic silver doped hydroxyapatite powder to prevent bacterial infection of bone implants. Biointerphases. 2016;11(2): 011012.[48] Brooks BD,Sinclair KD,Davidoff SN,et al.Molded polymer-coated composite bone void filler improves tobramycin controlled release kinetics.J Biomed Mater Res B Appl Biomater. 2014;102(5): 1074-1083.[49] Zheng X,Shi Y,Chen Y,et al.Novel impurity-free hexagonal hydroxyapatite nanotubes for local delivery of antibiotics in orthopedic surgery: in vitro release validation.Int J Clin Exp Med. 2015;8(2): 2628-2634.[50] Chia HN,Wu BM.Recent advances in 3D printing of biomaterials.J Biol Eng.2015;9:4. |