[1] Fuentes T, Kearns-Jonker M. Endogenous cardiac stem cells for the treatment of heart failure. Stem Cells Cloning. 2013;6: 1-12.[2] Iancu CB, Iancu D, Ren?ea I, et al. Molecular signatures of cardiac stem cells. Rom J Morphol Embryol. 2015;56(4): 1255-1262.[3] Di Siena S, Gimmelli R, Nori SL, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7(7):e2317.[4] Valente M, Nascimento DS, Cumano A, et al. Sca-1+ cardiac progenitor cells and heart-making: a critical synopsis. Stem Cells Dev 2014;23 (19):2263-2273.[5] Marbán E. Breakthroughs in cell therapy for heart desease: focus on cardiosphere-derived cells. Mayo Clin Proc. 2014; 89(6): 850-858. [6] Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895-904.[7] Cesselli D, Aleksova A, Mazzega E, et al. Cardiac stem cell aging and heart failure. Pharmacol Res. 2017. pii: S1043-6618(16)30838-6. [Epub ahead of print][8] Koudstaal S, Jansen Of Lorkeers SJ, Gaetani R, et al. Concise review: heart regeneration and the role of cardiac stem cells. Stem Cells Transl Med. 2013;2(6):434-443.[9] Mayfield AE, Tilokee EL, Latham N, et al. The effect of encapsulation of cardiac stem cells within matrix-enriched hydrogel capsules on cell survival, post-ischemic cell retention and cardiac function. Biomaterials. 2014;35(1):133-142.[10] Qiu Y, Bayomy AF, Gomez MV, et al. A role for matrix stiffness in the regulation of cardiac side population cell function. Am J Physiol Heart Circ Physiol. 2015;308(9):H990-997.[11] Kan L, Thayer P, Fan H, et al. Polymer microfiber meshes facilitate cardiac differentiation of c-kit(+) human cardiac stem cells. Exp Cell Res. 2016;347(1):143-152.[12] Mauretti A, Bax NA, van Marion MH, et al. Cardiomyocyte progenitor cell mechanoresponse unrevealed: strain avoidance and mechanosome development. Integr Biol (Camb). 2016;8(9):991-1001.[13] Kurazumi H, Li TS, Takemoto Y, et al. Haemodynamic unloading increases the survival and affects the differentiation of cardiac stem cells after implantation into an infarcted heart. Eur J Cardiothorac Surg. 2014;45(6):976-982.[14] Kurazumi H, Kubo M, Ohshima M, et al. The effects of mechanical stress on the growth, differentiation, and paracrine factor production of cardiac stem cells. PLoS One. 2011;6(12):e28890.[15] French KM, Maxwell JT, Bhutani S, et al. Fibronectin and Cyclic Strain Improve Cardiac Progenitor Cell Regenerative Potential In Vitro. Stem Cells Int. 2016;2016:8364382.[16] Miller JL, Grant PA. The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell Biochem. 2013;61:289-317.[17] Zhao J, Feng Y, Yan H, et al. β-arrestin2/miR-155/GSK3β regulates transition of 5'-azacytizine-induced Sca-1-positive cells to cardiomyocytes. J Cell Mol Med. 2014;18(8):1562-1570.[18] Ho YS, Tsai WH, Lin FC, et al. Cardioprotective Actions of TGFβRI Inhibition Through Stimulating Autocrine/Paracrine of Survivin and Inhibiting Wnt in Cardiac Progenitors. Stem Cells. 2016;34(2):445-455.[19] Bao L, Meng Q, Li Y, et al. C-Kit Positive Cardiac Stem Cells and Bone Marrow-Derived Mesenchymal Stem Cells Synergistically Enhance Angiogenesis and Improve Cardiac Function After Myocardial Infarction in a Paracrine Manner. J Card Fail. 2017; 23(5):403-415.[20] Liu L, Jin X, Zhou Z, et al. Enhancement of Anti-Hypoxic Activity and Differentiation of Cardiac Stem Cells by Supernatant Fluids from Cultured Macrophages that Phagocytized Dead Mesenchymal Stem Cells. Int J Mol Sci. 2016;17(7): E1175.[21] Kawaguchi N. Adult cardiac-derived stem cells: differentiation and survival regulators. Vitam Horm. 2011;87:111-125.[22] Forte E, Miraldi F, Chimenti I, et al. TGFβ-dependent epithelial-to-mesenchymal transition is required to generate cardiospheres from human adult heart biopsies. Stem Cells Dev. 2012;21(17):3081-3090.[23] Wang J, Greene SB, Bonilla-Claudio M, et al. Bmp signaling regulates myocardial differentiation from cardiac progenitors through a MicroRNA-mediated mechanism. Dev Cell. 2010; 19(6):903-912.[24] Menasché P, Vanneaux V, Hagège A, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36(30): 2011-2017.[25] de Pater E, Ciampricotti M, Priller F, et al. Bmp signaling exerts opposite effects on cardiac differentiation. Circ Res. 2012;110(4): 578-587. [26] Song J, McColl J, Camp E, et al. Smad1 transcription factor integrates BMP2 and Wnt3a signals in migrating cardiac progenitor cells. Proc Natl Acad Sci U S A. 2014;111(20):7337-7342.[27] Zhang J, Liu J, Liu L, et al. The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy. Autophagy. 2012;8(4):690-691.[28] Zhang J, Liu J, Huang Y, et al. FRS2α-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circ Res. 2012;110(4):e29-39.[29] Singla D, Wang J. Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart. Oxid Med Cell Longev. 2016;2016:5810908.[30] Engels MC, Rajarajan K, Feistritzer R, et al. Insulin-like growth factor promotes cardiac lineage induction in vitro by selective expansion of early mesoderm. Stem Cells. 2014;32(6):1493-1502.[31] Jackson R, Tilokee EL, Latham N, et al. Paracrine Engineering of Human Cardiac Stem Cells With Insulin-Like Growth Factor 1 Enhances Myocardial Repair. J Am Heart Assoc. 2015;4(9): e002104.[32] Poudel B, Bilbao D, Sarathchandra P, et al. Increased cardiogenesis in P19-GFP teratocarcinoma cells expressing the propeptide IGF-1Ea. Biochem Biophys Res Commun. 2011;416(3-4):293-299.[33] Jackson R, Tilokee EL, Latham N, et al. Paracrine Engineering of Human Cardiac Stem Cells With Insulin-Like Growth Factor 1 Enhances Myocardial Repair. J Am Heart Assoc. 2015;4(9):e002104. [34] D'Amario D, Cabral-Da-Silva MC, Zheng H, et al. Insulin-like growth factor-1 receptor identifies a pool of human cardiac stem cells with superior therapeutic potential for myocardial regeneration. Circ Res. 2011;108(12):1467-1481.[35] Wang X, Li Q, Hu Q, et al. Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31- cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte regeneration. PLoS One. 2014;9(2):e95247.[36] Ellison GM, Torella D, Dellegrottaglie S, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol. 2011;58(9):977-986.[37] Gallo S, Sala V, Gatti S, et al. HGF/Met Axis in Heart Function and Cardioprotection. Biomedicines. 2014;2(4): 247-262.[38] Liu J, Wu P, Wang H, et al. Necroptosis Induced by Ad-HGF Activates Endogenous C-Kit+ Cardiac Stem Cells and Promotes Cardiomyocyte Proliferation and Angiogenesis in the Infarcted Aged Heart. Cell Physiol Biochem. 2016; 40(5):847-860.[39] Savi M, Bocchi L, Rossi S, et al. Antiarrhythmic effect of growth factor-supplemented cardiac progenitor cells in chronic infarcted heart. Am J Physiol Heart Circ Physiol. 2016;310(11):H1622-1648.[40] Aonuma T, Takehara N, Maruyama K, et al. Apoptosis- Resistant Cardiac Progenitor Cells Modified With Apurinic/ Apyrimidinic Endonuclease/Redox Factor 1 Gene Overexpression Regulate Cardiac Repair After Myocardial Infarction. Stem Cells Transl Med. 2016;5(8):1067-1078.[41] Jankowski M, Broderick TL, Gutkowska J. Oxytocin and cardioprotection in diabetes and obesity. BMC Endocr Disord. 2016;16(1):34.[42] Houshmand F, Faghihi M, Zahediasl S. Role of atrial natriuretic Peptide in oxytocin induced cardioprotection. Heart Lung Circ. 2015;24(1):86-93.[43] Gonzalez-Reyes A, Menaouar A, Yip D, et al. Molecular mechanisms underlying oxytocin-induced cardiomyocyte protection from simulated ischemia-reperfusion. Mol Cell Endocrinol. 2015;412:170-181.[44] Danalache BA, Yu C, Gutkowska J, et al. Oxytocin-Gly-Lys-Arg stimulates cardiomyogenesis by targeting cardiac side population cells. J Endocrinol. 2014;220(3):277-289.[45] Bielmann C, Rignault-Clerc S, Liaudet L, et al. Brain natriuretic peptide is able to stimulate cardiac progenitor cell proliferation and differentiation in murine hearts after birth. Basic Res Cardiol. 2015;110(1):455.[46] Hsueh YC, Wu JM, Yu CK, et al. Prostaglandin E? promotes post-infarction cardiomyocyte replenishment by endogenous stem cells. EMBO Mol Med. 2014;6(4): 496-503.[47] Purvis N, Bahn A, Katare R. The Role of MicroRNAs in Cardiac Stem Cells. Stem Cells Int. 2015;2015:194894.[48] Gama-Carvalho M, Andrade J, Brás-Rosário L. Regulation of Cardiac Cell Fate by microRNAs: Implications for Heart Regeneration. Cells. 2014;3(4):996-1026.[49] Hosoda T, Zheng H, Cabral-da-Silva M, et al. Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation. 2011;123(12):1287-1296.[50] Chimenti I, Pagano F, Cavarretta E, et al. Β-blockers treatment of cardiac surgery patients enhances isolation and improves phenotype of cardiosphere-derived cells. Sci Rep. 2016;6:36774.[51] Ivey KN, Srivastava D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell. 2010; 7(1):36-41.[52] Pisano F, Altomare C, Cervio E, et al. Combination of miRNA499 and miRNA133 exerts a synergic effect on cardiac differentiation. Stem Cells. 2015;33(4):1187-1199.[53] Xiao J, Liang D, Zhang H, et al. MicroRNA-204 is required for differentiation of human-derived cardiomyocyte progenitor cells. J Mol Cell Cardiol. 2012;53(6):751-759.[54] Crippa S, Cassano M, Messina G, et al. miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. J Cell Biol. 2011;193(7):1197-1212.[55] Sirish P, López JE, Li N, et al. MicroRNA profiling predicts a variance in the proliferative potential of cardiac progenitor cells derived from neonatal and adult murine hearts. J Mol Cell Cardiol. 2012;52(1):264-272.[56] Ekhteraei-Tousi S, Mohammad-Soltani B, Sadeghizadeh M, et al. Inhibitory effect of hsa-miR-590-5p on cardiosphere- derived stem cells differentiation through downregulation of TGFB signaling. J Cell Biochem. 2015;116(1): 79-191.[57] Wu Q, Zhan J, Li Y, et al. Differentiation-Associated MicroRNA Alterations in Mouse Heart-Derived Sca-1(+)CD31(-) and Sca-1(+)CD31(+) Cells. Stem Cells Int. 2016;2016:9586751.[58] Deng S, Zhao Q, Zhou X, et al. Neonatal Heart-Enriched miR-708 Promotes Differentiation of Cardiac Progenitor Cells in Rats. Int J Mol Sci. 2016;17(6): E875.[59] Schmeckpeper J, Verma A, Yin L, et al. Inhibition of Wnt6 by Sfrp2 regulates adult cardiac progenitor cell differentiation by differential modulation of Wnt pathways. J Mol Cell Cardiol. 2015;85:215-225.[60] Bareja A, Hodgkinson CP, Payne AJ, et al. HASF (C3orf58) is a novel ligand of the insulin-like growth factor 1 receptor. Biochem J. 2017;474(5):771-780.[61] Lu Q, Liu Y, Wang Y, et al. Rapamycin efficiently promotes cardiac differentiation of mouse embryonic stem cells. Biosci Rep. 2017;37(3): BSR20160552.[62] Kochegarov A, Lemanski LF. New Trends in Heart Regeneration: A Review. J Stem Cells Regen Med. 2016; 12(2):61-68.[63] Peymani M, Ghaedi K, Irani S, et al. Peroxisome Proliferator-Activated Receptor γ Activity is Required for Appropriate Cardiomyocyte Differentiation. Cell J. 2016; 18(2):221-228.[64] Noseda M, Abreu-Paiva M, Schneider MD. The Quest for the Adult Cardiac Stem Cell. Circ J. 2015;79(7):1422-1430. |