中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (8): 1081-1088.doi: 10.3969/j.issn.2095-4344.2016.08.003

• 组织工程骨及软骨材料 tissue-engineered bone and cartilage materials • 上一篇    下一篇

初次承重引发骨水泥-柄界面脱粘损伤的分析

张岚峰1,葛世荣1,刘洪涛2,郭开今3   

  1. 1中国矿业大学机电工程学院,江苏省徐州市 221116;2中国矿业大学材料科学与工程学院,江苏省徐州市 221116;3徐州医学院附属医院关节外科,江苏省徐州市 221000
  • 收稿日期:2015-12-09 出版日期:2016-02-19 发布日期:2016-02-19
  • 通讯作者: 张岚峰,中国矿业大学机电工程学院,江苏省徐州市 221116
  • 作者简介:张岚峰,男,1984年生,江苏省徐州市人,汉族,中国矿业大学机电学院在读博士,主要从事生物力学研究。
  • 基金资助:
    江苏省高校优势学科建设工程资助项目(PAPD);江苏省青蓝基金(04150006);江苏省研究生培养创新工程(KYLX_1376);江苏省卫生计生委科研项目(H201528)

Primary loading causes bone cement-stem interface debonding injury

Zhang Lan-feng1, Ge Shi-rong1, Liu Hong-tao2, Guo Kai-jin3   

  1. 1School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, China; 2School of Material Science and Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, China; 3Department of Joint Surgery, the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, Jiangsu Province, China
  • Received:2015-12-09 Online:2016-02-19 Published:2016-02-19
  • Contact: Zhang Lan-feng, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, China
  • About author:Zhang Lan-feng, Studying for doctorate, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, China
  • Supported by:

    a grant supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions; Qinglan Foundation from Jiangsu Province of China, No. 04150006; the Graduate Education Innovation Project in Jiangsu Province of China, No. KYLX_1376; the Scientific Research Project of Health and Family Planning Commission of Jiangsu Province of China, No. H201528

摘要:

文章快速阅读:

文题释义:

骨水泥型关节置换松动的本质:骨水泥型关节置换松动的本质是骨水泥与假体和骨腔结合强度的破坏,而金属柄与骨水泥的黏结强度由骨水泥中的胶体与金属表面的化学胶着力、骨水泥-柄界面的机械咬合力和骨水泥-金属接触面摩擦力3部分组成。
骨水泥裂纹生成的原因:骨水泥内部微裂纹的萌生是导致骨水泥损伤及骨水泥-柄界面脱粘的主要原因。从宏观角度而言,骨水泥裂纹的生成,一方面骨水泥椁因受由径向和轴向应力共同形成压力场,影响萌生裂纹。另一方面界面滑动对骨水泥内部断裂损伤的影响,柄在骨水泥椁中下沉的最大距离为(2.2± 0.8)mm,而后骨水泥微裂纹压实,界面再次箍紧固定。从微观而言,骨水泥在搅拌聚合过程中形成不同饱和结晶度的聚合物,以及骨水泥颗粒分布不均匀形成的基体密度对断裂造成影响。

 

背景:骨水泥型人工假体术后松动的主要原因是界面脱粘和骨水泥内部损伤,多数研究认为二者发生于疲劳损伤过程中,却很少研究初次承重会引发骨水泥-柄界面和骨水泥内部的初始损伤。

目的:研究骨水泥-柄界面的力学特性和骨水泥内裂纹形成对该界面松动的影响。
方法:制作骨水泥-钛合金柄植入体构件,采用压入实验测量骨水泥-柄界面的最大黏结力,通过声发射仪在线监测骨水泥-柄界面脱粘过程中的骨水泥损伤和裂纹,利用三维表面轮廓仪、超声显微镜、X射线检测仪对金属表面与骨水泥圆筒内层进行无损检测。
结果与结论:通过脱粘实验和声发射仪在线监测证实,骨水泥的初始损伤萌生于患者术后初次承重,而非疲劳损伤阶段;骨水泥椁主要因受径向和轴向应力共同形成压力的作用引起裂纹萌生,骨水泥-柄界面剪滞效应无法阻止界面和椁内裂纹自上而下逐渐扩展;骨水泥固化过程中形成缺陷易影响材料力学性能,最终促使晶面断裂和高分子链断裂,形成银纹状裂纹,导致构件失效。 

关键词: 生物材料, 骨生物材料, 骨水泥, 柄, 钛合金, 断裂, 损伤, 脱粘, 无损检测, 缺陷

Abstract:

BACKGROUND: The main reason for the postoperative loosening of cemented prosthesis is interfacial debonding and bone cement internal damage. Most studies have suggested that both of them occur in the process of fatigue damage, however, little is reported on primary loading that results in the initial damage to the bone cement-stem interface and inside of bone cement.
OBJECTIVE: To study the mechanical properties of bone cement-stem interface, and the effect of crack formation in bone cement on interfacial loosening.
METHODS: The cement-titanium alloy handle implant components were prepared. The maximum adhesive force of bone cement-stem interface was measured using push-in experiment. The cement damage and crack in the process of bone cement-handle interfacial debonding were monitored online using acoustic emission tester. The non-destructive testing on the metal surface and the inner layer of bone cement cylinder was conducted using three-dimensional surface profiler, ultrasonic microscopy and X-ray detector.  
RESULTS AND CONCLUSION: The online monitoring results of debonding experiment and acoustic emission tester demonstrated that the initial damage of bone cement initiated in the primary loading of patients after operation, rather than at fatigue damage stage. Bone cement coffin caused cracks initiation mainly due to the combination effect of radial and axial stress. The bone cement-stem interfacial shear lag effect could not prevent the gradual extension of interface and inner coffin crack from top to bottom. The bone cement defects formed in solidification process was likely to affect the mechanical properties of the material, and eventually induced the crystal face and macromolecular chain fractures, forming silver striated cracks and leading component failure.