[1] 彭斯伟,宋敏,范凯,等.单味中药治疗肾虚型骨质疏松症机制研究状况[J].中国临床药理学杂志,2022,38(1):76-80.
[2] 陈镜,冯正平.骨质疏松症治疗药物研究进展[J].中国骨质疏松杂志, 2021,27(5):776-780.
[3] 武瑞骐,崔伟,杨启培,等.激素性股骨头坏死的中医药治疗机制[J].中国组织工程研究,2023,27(17):2763-2771.
[4] 侯伟,杜斌.中医药治疗骨质疏松症的研究进展[J].世界中西医结合杂志,2021,16(10):1956-1960.
[5] 丘志河,谢卫勇,黄刚,等.山奈酚通过调控miR-21/SOX9对骨关节炎软骨细胞增殖、凋亡的影响[J].中国药师,2022,25(12):2073-2078.
[6] RAKHA A, UMAR N, RABAIL R, et al. Anti-inflammatory and anti-allergic potential of dietary flavonoids:A review. Biomed Pharmacother. 2022;156: 113945.
[7] NEJABATI HR, ROSHANGAR L. Kaempferol: A potential agent in the prevention of colorectal cancer. Physiol Rep. 2022;10(20):e15488.
[8] IMRAN M, RAUF A, SHAH ZA, et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother Res. 2019;33(2):263-275.
[9] IMRAN M, RAUF A, SHAH ZA, et al. Chemo-preventive and ther-apeutic effect of the dietary flavonoid kaempferol:A comprehen-sive review. Phytother Res. 2019;33:263-275.
[10] 袁真,闵珺,王恺,等.杜仲黄酮类3种药物成分治疗大鼠骨质疏松的比较研究[J].中国骨质疏松杂志,2018,24(2):244-248.
[11] TSUCHIYA S, SUGIMOTO K, KAMIO H, et al. Kaempferol-immobilized titanium dioxide promotes formation of new bone: effects of loading methods on bone marrow stromal cell differentiation in vivo and in vitro. Int J Nanomedicine. 2018;13:1665-1676.
[12] DA LUZ BB, MARIA-FERREIRA D, DALLAZEN JL, et al. Effectiveness of the polyphenols-rich Sedum dendroideum infusion on gastric ulcer healing in rats:Roles of protective endogenous factors and antioxidant and anti-inflammatory mechanisms. J Ethnopharmacol. 2021;278:114260.
[13] LU X, LI J, ZHOU B, et al. Taohong Siwu Decoction enhances human bone marrow mesenchymal stem cells proliferation, migration and osteogenic differentiation via VEGF-FAK signaling in vitro [published online ahead of print, 2023 Jan 20]. J Ethnopharmacol. 2023;307:116203.
[14] FAGHFOURI AH, KHAJEBISHAK Y, PAYAHOO L, et al. Alivand M. PPAR-gamma agonists: Potential modulators of autophagy in obesity. Eur J Pharmacol. 2021;912:174562.
[15] ZHAO J, WU J, XU B, et al. Kaempferol promotes bone formation in part via the mTOR signaling pathway. Mol Med Rep. 2019;20(6):5197-5207.
[16] LIU H, YI X, TU S, et al. Kaempferol promotes BMSC osteogenic differentiation and improves osteoporosis by downregulating miR-10a-3p and upregulating CXCL12. Mol Cell Endocrinol. 2021;520:111074.
[17] GAN L, LENG Y, MIN J, et al. Kaempferol promotes the osteogenesis in rBMSCs via mediation of SOX2/miR-124-3p/PI3K/Akt/mTOR axis. Eur J Pharmacol. 2022;927:174954
[18] 丁淑琴,杨风琴,张玮,等.山奈酚治疗去卵巢大鼠骨质疏松的实验研究[J].中国新药杂志,2014,23(24):2925-2929+2932.
[19] ZHU J, TANG H, ZHANG Z, et al. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs. Int Immunopharmacol. 2017;43:236-242.
[20] WONG SK, CHIN KY, IMA-NIRWANA S. The Osteoprotective Effects Of Kaempferol: The Evidence From In Vivo And In Vitro Studies. Drug Des Devel Ther. 2019;13: 3497-3514.
[21] 任明诗,丁羽,李子涵,等.成骨细胞与破骨细胞相互调节作用的研究进展[J].中国药理学通报,2022,38(6):822-827.
[22] HUANG AY, XIONG Z, LIU K, et al. Identification of kaempferol as an OSX upregulator by network pharmacology-based analysis of qianggu Capsule for osteoporosis. Front Pharmacol. 2022;13:1011561.
[23] XIE B, ZENG Z, LIAO S, et al. Kaempferol ameliorates the inhibitory activity of dexamethasone in the osteogenesis of MC3T3-E1 cells by JNK and p38-MAPK pathways. Front Pharmacol. 2021;12:739326.
[24] WANG Y, CHEN H, ZHANG H. Kaempferol promotes proliferation,migration and differentiation of MC3T3-E1 cells via up-regulation of microRNA-101. Artif Cells Nanomed Biotechnol. 2019;47(1):1050-1056.
[25] NIE F, ZHANG W, CUI Q, et al. Kaempferol promotes proliferation and osteogenic differentiation of periodontal ligament stem cells via Wnt/β-catenin signaling pathway. Life Sci. 2020;258:118143.
[26] CHIOU WF, LEE CH, LIAO JF, et al. 8-Prenylkaempferol accelerates osteoblast maturation through bone morphogenetic protein-2/p38 pathway to activate Runx2 transcription. Life Sci. 2011;88:335-342.
[27] TOBEIHA M, MOGHADASIAN MH, AMIN N, et al. RANKL/RANK/OPG Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling. Biomed Res Int. 2020;2020:6910312.
[28] ASAI K, FUNABA M, MURAKAMI M. Enhancement of RANKL-induced MITF-E expression and osteoclastogenesis by TGF-β. Cell Biochem Funct. 2014;32:401-409.
[29] AKBAR IZ, DEWI FRP, SETIAWAN B. In Silico Interaction of the Active Compounds of Scurrula Atropurpurea with the RANK/RANKL/OPG System in Diabetoporosis. Acta Inform Med. 2019;27(1):8-11.
[30] MARINO S, LOGAN JG, MELLIS D, et al. Generation and culture of osteoclasts. Bonekey Rep. 2014;3:570.
[31] KIM CJ, SHIN SH, KIM BJ, et al. The Effects of Kaempferol-Inhibited Autophagy on Osteoclast Formation. Int J Mol Sci. 2018;19(1):125.
[32] KITAURA H, ZHOU P, KIM HJ, et al. M-CSF mediates TNF-induced inflammatory osteolysis. J Clin Invest. 2005;115(12):3418-3427.
[33] YAO Z, GETTING SJ, LOCKE IC. Regulation of TNF-Induced Osteoclast Differentiation. Cells. 2021;11(1):132.
[34] SANG C, ZHANG Y, CHEN F, et al. Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/β-catenin signaling in estrogen-deficiency induced osteoporosis. Bone. 2016;84:78-87.
[35] LIU WJ, JIANG ZM, CHEN Y, et al. Network pharmacology approach to elucidate possible action mechanisms of Sinomenii Caulis for treating osteoporosis. J Ethnopharmacol. 2020;257:112871.
[36] WU J, YANG Y, HE Y, et al. EFTUD2 gene deficiency disrupts osteoblast maturation and inhibits chondrocyte differentiation via activation of the p53 signaling pathway. Hum Genomics. 2019;13(1):63.
[37] LING Y, XU H, REN N, et al. Prediction and Verification of the Major Ingredients and Molecular Targets of Tripterygii Radix Against Rheumatoid Arthritis. Front Pharmacol. 2021;12:639382.
[38] BEHL T, MEHTA K, SEHGAL A, et al. Exploring the role of polyphenols in rheumatoid arthritis. Crit Rev Food Sci Nutr. 2022;62(19):5372-5393.
[39] 郭一览,孙朋.Wnt/β-catenin信号通路在运动调控骨形成中的机制[J].生命科学,2022,34(12):1519-1529.
[40] HUANG JM, BAO Y, XIANG W, et al. Icariin Regulates the Bidirectional Differentiation of Bone Marrow Mesenchymal Stem Cells through Canonical Wnt Signaling Pathway. Evid Based Complement Alternat Med. 2017;2017:8085325.
[41] SHARMA AR, NAM JS. Kaempferol stimulates WNT/β-catenin signaling pathway to induce differentiation of osteoblasts. J Nutr Biochem. 2019; 74:108228.
[42] NIE F, ZHANG W, CUI Q, et al. Kaempferol promotes proliferation and osteogenic differentiation of periodontal ligament stem cells via Wnt/β-catenin signaling pathway. Life Sci. 2020;258:118143.
[43] YASUDA H. Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab. 2021;39(1):2-11.
[44] TOBEIHA M, MOGHADASIAN MH, AMIN N, et al. RANKL/RANK/OPG Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling. Biomed Res Int. 2020;2020:6910312.
[45] XU Q, CHEN G, LIU X, et al. Icariin inhibits RANKL-induced osteoclastogenesis via modulation of the NF-κB and MAPK signaling pathways. Biochem Biophys Res Commun. 2019;508(3):902-906.
[46] XIAO Y, LIU L, ZHENG Y, et al. Kaempferol attenuates the effects of XIST/miR-130a/STAT3 on inflammation and extracellular matrix degradation in osteoarthritis. Future Med Chem. 2021;13(17):1451-1464.
[47] RAMESH P, JAGADEESAN R, SEKARAN S, et al. Flavonoids: Classification, Function, and Molecular Mechanisms Involved in Bone Remodelling. Front Endocrinol (Lausanne). 2021;12:779638.
[48] LEE WS, LEE EG, SUNG MS, et al. Kaempferol inhibits IL-1β-stimulated, RANKL-mediated osteoclastogenesis via downregulation of MAPKs, c-Fos, and NFATc1. Inflammation. 2014;37(4):1221-1230.
[49] FENG WQ, LIU KY, ZHANG JN, et al. Study on mechanism of Rehmanniae Radix Praeparata for treatment of osteoarthritis based on network pharmacology and molecular docking. Zhongguo Zhong Yao Za Zhi. 2022; 47(19):5336-5343.
[50] BOYCE BF, YAO Z, XING L. Osteoclasts have multiple roles in bone in addition to bone resorption. Crit Rev Eukaryot Gene Expr. 2009;19(3):171-180.
[51] HOOSHIAR SH, TOBEIHA M, JAFARNEJAD S. Soy Isoflavones and Bone Health: Focus on the RANKL/RANK/OPG Pathway. Biomed Res Int. 2022; 2022:8862278.
[52] 陈巧玲,白亦光,别俊,等.靶向抑制Akt对成骨细胞分化PI3K/Akt信号通路调控的研究[J].广西医科大学学报,2020,37(12):2123-2128.
[53] 王秉义,潘剑.丹参素拮抗氧化应激所致骨质疏松并通过PI3k/Akt通路减少成骨细胞的凋亡[J].中国骨质疏松杂志,2017,23(1):1-5+11.
[54] 赵明智,张磊,周丹,等.山奈酚调控PI3K/AKT/GSK-3β信号通路促进人炎性乳腺癌SUM190细胞株凋亡的研究[J].广西医科大学学报,2019, 36(6):872-877.
[55] 崔琳娜,蒋校文,黄华庆,等.山奈酚通过mTORC1信号促进牵张力下小鼠骨髓间充质细胞成骨分化机制研究[J].口腔疾病防治,2021,29(4): 234-240.
[56] HUANG L, LYU Q, ZHENG W, et al. Traditional application and modern pharmacological research of Eucommia ulmoides Oliv. Chin Med. 2021; 16(1):73.
[57] CHOI EM. Kaempferol protects MC3T3-E1 cells through antioxidant effect and regulation of mitochondrial function. Food Chem Toxicol. 2011;49(8): 1800-1805.
[58] CHENG CH, CHEN LR, CHEN KH. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. Int J Mol Sci. 2022;23(3):1376.
[59] CHEN P, LI B, OU-YANG L. Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne). 2022;13:839005.
[60] PRAKASH R, MISHRA T, DEV K, et al. Phenanthrenoid Coelogin Isolated from Coelogyne cristata Exerts Osteoprotective Effect Through MAPK-Mitogen-Activated Protein Kinase Signaling Pathway. Calcif Tissue Int. 2021; 109(1):32-43.
[61] ONDRICEK AJ, KASHYAP AK, THAMAKE SI, et al. A comparative study of phytoestrogen action in mitigating apoptosis induced by oxidative stress. In Vivo. 2012;26(5):765-775.
[62] PROUILLET C, MAZIÈRE JC, MAZIÈRE C, et al. Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol. 2004;67(7):1307-1313.
[63] GUO AJ, CHOI RC, ZHENG KY, et al. Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling. Chin Med. 2012;7:10.
[64] YANG L, CHEN Q, WANG F, et al. Antiosteoporotic compounds from seeds of Cuscuta chinensis. J Ethnopharmacol. 2011;135(2):553-560.
[65] WU M, CHEN G, LI YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009.
[66] HE G, GUO W, LOU Z, et al. Achyranthes bidentata saponins promote osteogenic differentiation of bone marrow stromal cells through the ERK MAPK signaling pathway. Cell Biochem Biophys. 2014;70(1):467-473.
[67] JIAN J, SUN L, CHENG X, et al. Calycosin-7-O-β-D-glucopyranoside stimulates osteoblast differentiation through regulating the BMP/WNT signaling pathways. Acta Pharmaceutica Sinica B. 2015;5(5):454-460.
[68] ADHIKARY S, CHOUDHARY D, AHMAD N, et al. Dietary flavonoid kaempferol inhibits glucocorticoid-induced bone loss by promoting osteoblast survival. Nutrition. 2018;53:64-76.
[69] CHAKRABORTY C, SHARMA AR, PATRA BC, et al. MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget. 2016;7(27):42683-42697.
[70] WANG Z, GOU X. Receptor-Like Protein Kinases Function Upstream of MAPKs in Regulating Plant Development. Int J Mol Sci. 2020;21(20):7638.
[71] ZHANG ND, HAN T, HUANG BK, et al. Traditional Chinese medicine formulas for the treatment of osteoporosis: Implication for antiosteoporotic drug discovery. J Ethnopharmacol. 2016;189:61-80.
[72] XIONG Z, ZHENG C, CHANG Y, et al. Exploring the Pharmacological Mechanism of Duhuo Jisheng Decoction in Treating Osteoporosis Based on Network Pharmacology. Evid Based Complement Alternat Med. 2021; 2021:5510290.
[73] HE G, GUO W, LOU Z, et al. Achyranthes bidentata saponins promote osteogenic differentiation of bone marrow stromal cells through the ERK MAPK signaling pathway. Cell Biochem Biophys. 2014;70(1):467-473.
[74] ZHOU L, WU T. A Network Pharmacology-Based Study on Vital Pharmacological Pathways and Targets of Eucommiae Cortex Acting on Osteoporosis. Biomed Res Int. 2022;2022:8510842.
[75] WANG X, TAN Y, LIU F, et al. Pharmacological network analysis of the functions and mechanism of kaempferol from Du Zhong in intervertebral disc degeneration (IDD). J Orthop Translat. 2023;39:135-146.
[76] HASSANZADEH A, NAIMI A, HAGH MF, et al. Kaempferol Improves TRAIL-Mediated Apoptosis in Leukemia MOLT-4 Cells by the Inhibition of Anti-apoptotic Proteins and Promotion of Death Receptors Expression. Anticancer Agents Med Chem. 2019;19(15):1835-1845. |