中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (26): 4250-4256.doi: 10.12307/2024.436
• 组织构建综述 tissue construction review • 上一篇 下一篇
杨启航1,蒲 锐1,2,陈子扬1,2,冷思逸1,宋永晶1,刘 辉3,杜光友1
收稿日期:
2023-06-06
接受日期:
2023-08-07
出版日期:
2024-09-18
发布日期:
2023-10-07
通讯作者:
杜光友,博士,副教授,硕士生导师,长江大学教育与体育学院,湖北省荆州市 434023
作者简介:
杨启航,男,1999年生,湖北省襄阳市人,汉族,长江大学教育与体育学院在读硕士,主要从事运动健康促进、运动与慢性病干预研究。
基金资助:
Yang Qihang1, Pu Rui1, 2, Chen Ziyang1, 2, Leng Siyi1, Song Yongjing1, Liu Hui3, Du Guangyou1
Received:
2023-06-06
Accepted:
2023-08-07
Online:
2024-09-18
Published:
2023-10-07
Contact:
Du Guangyou, PhD, Associate professor, Master’s supervisor, College of Education and Sports Sciences, Yangtze University, Jingzhou 434023, Hubei Province, China
About author:
Yang Qihang, Master candidate, College of Education and Sports Sciences, Yangtze University, Jingzhou 434023, Hubei Province, China
Supported by:
摘要:
文题释义:
肠道菌群:生活在人体肠道内所有微生物的总和,其种类超过 1 000种,遍布于十二指肠、小肠和结肠,总数量约为 1014个,它们与宿主和谐共生形成稳态。
背景:肠道菌群及其代谢物能参与骨质疏松的病理进程,在骨质疏松的诊断与治疗中发挥重要作用。此外,运动可调控肠道菌群进而影响骨质疏松的发生发展。
目的:总结肠道菌群对成骨细胞、破骨细胞和骨髓间充质干细胞等的作用与机制,探讨运动介导肠道菌群在调控骨质疏松中的潜在作用。结果与结论:①肠道菌群丰度和多样性变化以及氧化三甲胺和胆汁酸等肠道菌群代谢物水平变化,能作为骨质疏松诊断的生物标记物。②肠道菌群失调可导致肠屏障功能障碍和产生过量脂多糖、氧化三甲胺,诱导分泌肿瘤坏死因子α等炎症细胞因子、激活核因子κB信号通路以及加剧氧化应激等,进而促进破骨细胞分化、诱导成骨细胞凋亡以及影响骨髓间充质干细胞的成骨迁移;重塑肠道菌群稳态能抑制炎症反应、下调氧化应激,进而抑制破骨细胞分化、促进成骨细胞分化以及调控骨髓间充质干细胞的成骨迁移,防治骨质疏松。③运动能调控肠道菌群稳态、改善肠屏障功能、促进短链脂肪酸和胆汁酸分泌、下调血清脂多糖水平、降低氧化应激,进而抑制骨细胞凋亡、抑制破骨细胞分化、促进成骨细胞分化和调节骨细胞营养代谢,从而发挥防治骨质疏松的潜力。
https://orcid.org/0000-0002-8590-3481(杨启航)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
杨启航, 蒲 锐, 陈子扬, 冷思逸, 宋永晶, 刘 辉, 杜光友. 肠道菌群与骨质疏松及运动干预[J]. 中国组织工程研究, 2024, 28(26): 4250-4256.
Yang Qihang, Pu Rui, Chen Ziyang, Leng Siyi, Song Yongjing, Liu Hui, Du Guangyou. Intestinal flora and osteoporosis and exercise intervention[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(26): 4250-4256.
[1] KENDLER DL, MARIN F, ZERBINI CAF, et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2018;391(10117):230-240. [2] WALDBAUM JDH, XHUMARI J, AKINSUYI OS, et al. Association between Dysbiosis in the Gut Microbiota of Primary Osteoporosis Patients and Bone Loss. Aging Dis. 2023. doi: 10.14336/AD.2023.0425 [3] 杨启航,蒲锐,陈子扬,等.肠道菌群代谢物在肥胖调控中的作用与机制[J].中国组织工程研究,2024,28(2):308-314. [4] AKINSUYI OS, ROESCH LFW. Meta-Analysis Reveals Compositional and Functional Microbial Changes Associated with Osteoporosis. Microbiol Spectr. 2023;11(3): e0032223. [5] INCHINGOLO AM, GARGIULO ISACCO C, INCHINGOLO AD, et al. The human microbiota key role in the bone metabolism activity. Eur Rev Med Pharmacol Sci. 2023;27(6):2659-2670. [6] 佟喆,张振南,于潼.运动疗法防治骨质疏松症机制的研究进展[J].中国骨质疏松杂志,2022,28(10):1556-1560. [7] SENDER R, FUCHS S, MILO R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell. 2016;164(3):337-340. [8] GOMAA EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek. 2020;113(12):2019-2040. [9] VáZQUEZ-BAEZA Y, CALLEWAERT C, DEBELIUS J, et al. Impacts of the Human Gut Microbiome on Therapeutics. Annu Rev Pharmacol Toxicol. 2018;58:253-270. [10] CONTINO KF, YADAV H, SHIOZAWA Y. The gut microbiota can be a potential regulator and treatment target of bone metastasis. Biochem Pharmacol. 2022; 197:114916. [11] YUAN Y, YANG J, ZHUGE A, et al. Gut microbiota modulates osteoclast glutathione synthesis and mitochondrial biogenesis in mice subjected to ovariectomy. Cell Prolif. 2022;55(3):e13194. [12] LI JY, CHASSAING B, TYAGI AM, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126(6): 2049-2063. [13] HUANG R, LIU P, BAI Y, et al. Changes in the gut microbiota of osteoporosis patients based on 16S rRNA gene sequencing: a systematic review and meta-analysis. J Zhejiang Univ Sci B. 2022;23(12):1002-1013. [14] CZERNIK PJ, GOLONKA RM, CHAKRABORTY S, et al. Reconstitution of the host holobiont in germ-free born male rats acutely increases bone growth and affects marrow cellular content. Physiol Genomics. 2021;53(12):518-533. [15] LIU Y, GUO YL, MENG S, et al. Gut microbiota-dependent Trimethylamine N-Oxide are related with hip fracture in postmenopausal women: a matched case-control study. Aging (Albany NY). 2020;12(11):10633-10641. [16] ZHAO YX, SONG YW, ZHANG L, et al. Association between bile acid metabolism and bone mineral density in postmenopausal women. Clinics (Sao Paulo). 2020; 75:e1486. [17] SCHWARZER M, MAKKI K, STORELLI G, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016; 351(6275):854-857. [18] SJÖGREN K, ENGDAHL C, HENNING P, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27(6):1357-1367. [19] QUACH D, COLLINS F, PARAMESWARAN N, et al. Microbiota Reconstitution Does Not Cause Bone Loss in Germ-Free Mice. mSphere. 2018;3(1):e00545-17. [20] LIU S, LI G, XU H, et al. “Cross-talk” between gut microbiome dysbiosis and osteoarthritis progression: a systematic review. Front Immunol. 2023;14:1150572. [21] LI C, HUANG Q, YANG R, et al. Gut microbiota composition and bone mineral loss-epidemiologic evidence from individuals in Wuhan, China. Osteoporos Int. 2019;30(5):1003-1013. [22] 袁剑,孔令俊,丁海霞,等.肿瘤坏死因子-α调控骨质疏松症作用机制研究[J].中国骨质疏松杂志,2023,29(3):426-430+436. [23] WANG N, HAO Y, FU L. Trimethylamine-N-Oxide Promotes Osteoclast Differentiation and Bone Loss via Activating ROS-Dependent NF-κB Signaling Pathway. Nutrients. 2022;14(19):3955. [24] CHEN Y, YANG C, DAI Q, et al. Gold-nanosphere mitigates osteoporosis through regulating TMAO metabolism in a gut microbiota-dependent manner. J Nanobiotechnol. 2023;21(1):125. [25] LIU T, YU H, WANG S, et al. Chondroitin sulfate alleviates osteoporosis caused by calcium deficiency by regulating lipid metabolism. Nutr Metab (Lond). 2023;20(1):6. [26] LI M, VAN ESCH B, WAGENAAR GTM, et al. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol. 2018; 831:52-59. [27] ZHU L, HUA F, DING W, et al. The correlation between the Th17/Treg cell balance and bone health. Immun Ageing. 2020;17:30. [28] YANG X, WANG Y, HAN X, et al. Effects of TGF-β1 on OPG/RANKL expression of cementoblasts and osteoblasts are similar without stress but different with mechanical compressive stress. ScientificWorldJournal. 2015;2015:718180. [29] SUN P, ZHANG C, HUANG Y, et al. Jiangu granule ameliorated OVX rats bone loss by modulating gut microbiota-SCFAs-Treg/Th17 axis. Biomed Pharmacother. 2022;150:112975. [30] GUO M, LIU H, YU Y, et al. Lactobacillus rhamnosus GG ameliorates osteoporosis in ovariectomized rats by regulating the Th17/Treg balance and gut microbiota structure. Gut Microbes. 2023;15(1):2190304. [31] LUCAS S, OMATA Y, HOFMANN J, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun. 2018;9(1):55. [32] LI X, HAN Y, GUAN Y, et al. Aluminum induces osteoblast apoptosis through the oxidative stress-mediated JNK signaling pathway. Biol Trace Elem Res. 2012; 150(1-3):502-508. [33] 汪青,钱胤华,黄昊强,等.氧化应激在骨质疏松症与肩袖损伤共病机制中的研究进展[J].中国骨质疏松杂志,2023,29(5):776-780. [34] LORENZO D, GIANVINCENZO Z, CARLO LUCA R, et al. Oral-Gut Microbiota and Arthritis: Is There an Evidence-Based Axis? J Clin Med. 2019;8(10):0. doi: 10.3390/jcm8101753. [35] SUDO N, CHIDA Y, AIBA Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263-275. [36] COOPER MS. Sensitivity of bone to glucocorticoids. Clin Sci (Lond). 2004;107(2): 111-123. [37] ZHOU RX, ZHANG YW, CAO MM, et al. Linking the relation between gut microbiota and glucocorticoid-induced osteoporosis. J Bone Miner Metab. 2023; 41(2):145-162. [38] HONG S, CHA KH, PARK JH, et al. Cinnamic acid suppresses bone loss via induction of osteoblast differentiation with alteration of gut microbiota. J Nutr Biochem. 2022;101:108900. [39] XIAO L, ZHOU Y, BOKOLIYA S, et al. Bone loss is ameliorated by fecal microbiota transplantation through SCFA/GPR41/ IGF1 pathway in sickle cell disease mice. Sci Rep. 2022;12(1):20638. [40] YADAV VK, RYU JH, SUDA N, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell. 2008;135(5):825-837. [41] XIAO HH, ZHU YX, LU L, et al. The Lignan-Rich Fraction from Sambucus williamsii Hance Exerts Bone Protective Effects via Altering Circulating Serotonin and Gut Microbiota in Rats. Nutrients. 2022;14(22):4718. [42] LI J Y, YU M, PAL S, et al. Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota. J Clin Invest. 2020;130(4): 1767-1781. [43] LI Z, HUANG J, WANG F, et al. Dual Targeting of Bile Acid Receptor-1 (TGR5) and Farnesoid X Receptor (FXR) Prevents Estrogen-Dependent Bone Loss in Mice. J Bone Miner Res. 2019;34(4):765-776. [44] WANG Q, WANG G, WANG B, et al. Activation of TGR5 promotes osteoblastic cell differentiation and mineralization. Biomed Pharmacother. 2018;108:1797-1803. [45] CHO SW, AN JH, PARK H, et al. Positive regulation of osteogenesis by bile acid through FXR. J Bone Miner Res. 2013;28(10):2109-2121. [46] WEI X, YANG X, HAN ZP, et al. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 2013;34(6):747-754. [47] OZASA R, MATSUGAKI A, ISOBE Y, et al. Construction of human induced pluripotent stem cell-derived oriented bone matrix microstructure by using in vitro engineered anisotropic culture model. J Biomed Mater Res A. 2018;106(2): 360-369. [48] XING J, YING Y, MAO C, et al. Hypoxia induces senescence of bone marrow mesenchymal stem cells via altered gut microbiota. Nat Commun. 2018;9(1): 2020. [49] LIN H, LIU T, LI X, et al. The role of gut microbiota metabolite trimethylamine N-oxide in functional impairment of bone marrow mesenchymal stem cells in osteoporosis disease. Ann Transl Med. 2020;8(16):1009. [50] CHEN CY, RAO SS, YUE T, et al. Glucocorticoid-induced loss of beneficial gut bacterial extracellular vesicles is associated with the pathogenesis of osteonecrosis. Sci Adv. 2022;8(15):eabg8335. [51] LI W, LI T, TANG Z, et al. Taohong Siwu decoction promotes the process of fracture healing by activating the VEGF-FAK signal pathway and systemically regulating the gut microbiota. J Appl Microbiol. 2022;133(3):1363-1377. [52] QUEIPO-ORTUÑO MI, SEOANE LM, MURRI M, et al. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One. 2013;8(5):e65465. [53] LAMBERT JE, MYSLICKI JP, BOMHOF MR, et al. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab. 2015;40(7): 749-752. [54] LIU Z, LIU HY, ZHOU H, et al. Moderate-Intensity Exercise Affects Gut Microbiome Composition and Influences Cardiac Function in Myocardial Infarction Mice. Front Microbiol. 2017;8:1687. [55] WANG J, ZHANG Q, XIA J, et al. Moderate Treadmill Exercise Modulates Gut Microbiota and Improves Intestinal Barrier in High-Fat-Diet-Induced Obese Mice via the AMPK/CDX2 Signaling Pathway. Diabetes Metab Syndr Obes. 2022;15: 209-223. [56] ESTAKI M, PITHER J, BAUMEISTER P, et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4(1):42. [57] ALLEN JM, MAILING LJ, NIEMIRO GM, et al. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med Sci Sports Exerc. 2018;50(4):747-757. [58] BARTON W, PENNEY NC, CRONIN O, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2018;67(4):625-633. [59] MOTIANI KK, COLLADO MC, ESKELINEN JJ, et al. Exercise Training Modulates Gut Microbiota Profile and Improves Endotoxemia. Med Sci Sports Exerc. 2020;52(1): 94-104. [60] WU J, OKA J, HIGUCHI M, et al. Cooperative effects of isoflavones and exercise on bone and lipid metabolism in postmenopausal Japanese women: a randomized placebo-controlled trial. Metabolism. 2006;55(4):423-433. [61] CASTRO AP, SILVA KKS, MEDEIROS CSA, et al. Effects of 12 weeks of resistance training on rat gut microbiota composition. J Exp Biol. 2021;224(12):242543. [62] 雷岱. HIIT和MICT对高脂膳食大鼠肠道菌群与TLR4蛋白的影响[D].石家庄:河北师范大学,2021. [63] DENOU E, MARCINKO K, SURETTE MG, et al. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab. 2016;310(11):E982-993. [64] MCKENNA CF, SALVADOR AF, HUGHES RL, et al. Higher protein intake during resistance training does not potentiate strength, but modulates gut microbiota, in middle-aged adults: a randomized control trial. Am J Physiol Endocrinol Metab. 2021;320(5):E900-E913. [65] DUPUIT M, RANCE M, MOREL C, et al. Effect of Concurrent Training on Body Composition and Gut Microbiota in Postmenopausal Women with Overweight or Obesity. Med Sci Sports Exerc. 2022;54(3):517-529. [66] RETTEDAL EA, CREE JME, ADAMS SE, et al. Short-term high-intensity interval training exercise does not affect gut bacterial community diversity or composition of lean and overweight men. Exp Physiol. 2020;105(8):1268-1279. [67] LEE CS, KIM BK, LEE IO, et al. Prevention of bone loss by using Lactobacillus-fermented milk products in a rat model of glucocorticoid-induced secondary osteoporosis. Int Dairy J. 2020;109:526-533. [68] LI K, LIU A, ZONG W, et al. Moderate exercise ameliorates osteoarthritis by reducing lipopolysaccharides from gut microbiota in mice. Saudi J Biol Sci. 2021; 28(1): 40-49. [69] 刘洋.高脂膳食和运动调控小鼠肠道菌群及LPS-TLR4/NF-κB信号通路在肥胖性骨性关节炎中的作用[D].上海:上海体育学院,2019. [70] 梁家琪,刘恒旭,阳金鑫,等.运动与肠道菌健康效益的关系[J].中国组织工程研究,2023,27(8):1292-1299. [71] MCCABE LR, IRWIN R, TEKALUR A, et al. Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice. Bone. 2019;118:20-31. [72] YUAN FL, LI X, LU WG, et al. Regulatory T cells as a potent target for controlling bone loss. Biochem Biophys Res Commun. 2010;402(2):173176. [73] CHEN H, SHEN L, LIU Y, et al. Strength Exercise Confers Protection in Central Nervous System Autoimmunity by Altering the Gut Microbiota. Front Immunol. 2021;12:628629. [74] ZHANG YW, CAO MM, LI YJ, et al. Fecal microbiota transplantation as a promising treatment option for osteoporosis. J Bone Miner Metab. 2022;40(6):874-889. [75] HUANG WC, TUNG CL, YANG YSH, et al. Endurance exercise ameliorates Western diet-induced atherosclerosis through modulation of microbiota and its metabolites. Sci Rep. 2022;12(1):3612. [76] 吴彬,张勇,陈明亮,等.雌马酚对去卵巢后大鼠骨质疏松症的影响[J].第三军医大学学报,2015,37(3):256-260. [77] CORNISH J, CALLON KE, BAVA U, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175(2):405-415. [78] RIOS JL, BOMHOF MR, REIMER RA, et al. Protective effect of prebiotic and exercise intervention on knee health in a rat model of diet-induced obesity. Sci Rep. 2019;9(1):3893. [79] MEISSNER M, LOMBARDO E, HAVINGA R, et al. Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice. Atherosclerosis. 2011;218(2):323-329. [80] CHEN SEE JR, AMOS D, WRIGHT J, et al. Synergistic effects of exercise and catalase overexpression on gut microbiome. Environ Microbiol. 2022;24(9):4220-4235. [81] MUNUKKA E, AHTIAINEN JP, PUIGBó P, et al. Six-Week Endurance Exercise Alters Gut Metagenome That Is not Reflected in Systemic Metabolism in Over-weight Women. Front Microbiol. 2018;9:2323. [82] UDAY S, HÖGLER W. Nutritional Rickets and Osteomalacia in the Twenty-first Century: Revised Concepts, Public Health, and Prevention Strategies. Curr Osteoporos Rep. 2017;15(4):293-302. [83] 王培霞,张勤,周石仙,等.骨质疏松症营养干预研究进展[J].中国骨质疏松杂志,2023,29(3):409-412+443. [84] ILESANMI-OYELERE BL, ROY NC, KRUGER MC. Modulation of Bone and Joint Biomarkers, Gut Microbiota, and Inflammation Status by Synbiotic Supplementation and Weight-Bearing Exercise: Human Study Protocol for a Randomized Controlled Trial. JMIR Res Protoc. 2021;10(10):e30131. [85] LUO B, XIANG D, NIEMAN DC, et al. The effects of moderate exercise on chronic stress-induced intestinal barrier dysfunction and antimicrobial defense. Brain Behav Immun. 2014;39:99-106. [86] FU R, NIU R, ZHAO F, et al. Exercise alleviated intestinal damage and microbial disturbances in mice exposed to fluoride. Chemosphere. 2022;288:132658. [87] DONOHOE DR, GARGE N, ZHANG X, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011; 13(5):517-526. |
[1] | 郭苏童, 冯德宏, 郭 宇, 王 凌, 丁育健, 刘 仪, 钱正瑛, 李明洋. 正常与骨质疏松髋关节模型的建立及有限元分析[J]. 中国组织工程研究, 2024, 28(9): 1342-1346. |
[2] | 吴 菁, 姚英策, 杨晓巍, 薛博士, 赵建斌, 杨 辰, 栾天峰, 周志鹏. 肌力训练与神经肌肉电刺激干预髌股关节痛患者下肢功能和生物力学的变化[J]. 中国组织工程研究, 2024, 28(9): 1365-1371. |
[3] | 杨策凯, 蔡卓延, 陈 明, 刘 昊, 翁 汭, 崔健超, 张顺聪, 姚珍松. 绝经后女性椎旁肌退化与经皮穿刺椎体成形后再骨折的相关性[J]. 中国组织工程研究, 2024, 28(9): 1414-1419. |
[4] | 娄 国, 张 艳, 付常喜. 内皮型一氧化氮合酶在运动预适应改善心肌缺血-再灌注损伤中的作用[J]. 中国组织工程研究, 2024, 28(8): 1283-1288. |
[5] | 章晓云, 刘 桦, 柴 源, 陈 锋, 曾 浩, 高振罡, 黄有荣. 益肾固疏方干预老年性骨质疏松症患者骨代谢标志物的变化及临床疗效[J]. 中国组织工程研究, 2024, 28(8): 1155-1160. |
[6] | 赵嘎日达, 任逸众, 韩长旭, 孔令跃, 贾岩波. 蒙药额尔敦-乌日勒修复骨关节炎大鼠模型的机制[J]. 中国组织工程研究, 2024, 28(8): 1193-1199. |
[7] | 王 继, 张 敏, 李文博, 杨中亚, 张 龙. 有氧运动对2型糖尿病大鼠糖脂代谢、骨骼肌炎症和自噬的影响[J]. 中国组织工程研究, 2024, 28(8): 1200-1205. |
[8] | 代越星, 郑利钦, 吴敏辉, 李志鸿, 李少彬, 郑德声, 林梓凌. 血管数量对小血管网计算流体力学的影响[J]. 中国组织工程研究, 2024, 28(8): 1206-1210. |
[9] | 周邦瑜, 李 杰, 阮玉山, 耿福能, 李绍波. 美洲大蠊研粉干预脊髓半横断大鼠运动功能和自噬蛋白Beclin-1的表达[J]. 中国组织工程研究, 2024, 28(8): 1223-1228. |
[10] | 阮 蓉, 娄旭佳, 金其贯, 章立冰, 徐 尚, 胡玉龙. 白藜芦醇可调控运动性疲劳大鼠的糖异生[J]. 中国组织工程研究, 2024, 28(8): 1229-1234. |
[11] | 童奕博 , 李明辉. 骨质疏松性椎体骨折患者椎体成形后邻近椎体再发骨折的影响因素[J]. 中国组织工程研究, 2024, 28(8): 1241-1246. |
[12] | 张 敏, 彭 婧, 张 强, 陈德旺. 有限元法分析老年骨质疏松患者L3/4椎板减压椎间融合的力学性能[J]. 中国组织工程研究, 2024, 28(6): 847-851. |
[13] | 薛晓峰, 魏永康, 乔晓红, 杜玉勇, 牛建军, 任立新, 杨慧峰, 张治民, 郭 媛, 陈维毅. 股骨颈骨折空心钉内固定后股骨近端骨质疏松的有限元分析[J]. 中国组织工程研究, 2024, 28(6): 862-867. |
[14] | 凯依塞尔•阿布都克力木, 麦麦提敏•阿卜力米提, 李 磊, 杨晓凯, 张玉坤, 刘 帅. 女性腰椎退行性病变患者腰椎CT值对骨质疏松症的诊断作用[J]. 中国组织工程研究, 2024, 28(6): 945-949. |
[15] | 王力平, 连天星, 胡永荣, 杨红胜, 曾智谋, 刘 浩, 屈 波. 胸部CT椎体HU值在2型糖尿病骨质疏松症机会性筛查中的价值[J]. 中国组织工程研究, 2024, 28(6): 950-954. |
1.1.6 检索策略 输入关键词,以标题和摘要为检索条件进行检索。以PubMed数据库为例的检索策略,见图1。
1.1.7 检索文献量 初步检索共获得中文文献810篇,英文文献1 840篇,总共2 650篇。
1.3 文献质量评价 通过阅读标题、摘要及关键词对文献进行初步筛选,排除重复研究及与纳入标准无关的中英文文献,查阅全文最终保留87篇文献,包括中文文献9篇、英文文献78篇,见图2。
#br#
文题释义:
肠道菌群:生活在人体肠道内所有微生物的总和,其种类超过 1 000种,遍布于十二指肠、小肠和结肠,总数量约为 1014个,它们与宿主和谐共生形成稳态。肠道菌群失调会加剧炎症反应和诱导氧化应激,从而促使骨细胞凋亡和成骨细胞分化,进而加剧骨质流失;调控肠道菌群能抑制破骨细胞分化、促进成骨细胞分化、抑制骨细胞凋亡以及调节骨髓间充质干细胞功能。合理运动有益于改善机体不同系统,其中部分作用机制源于运动对肠道菌群的调节,跑步机运动、橄榄球运动、自行车以及步行等有氧运动和抗阻运动均可重塑肠道菌群,增加肠道菌群多样性和丰度,而高强间歇运动对肠道菌群的影响却存在差异。运动介导肠道菌群具有改善骨代谢的潜在作用,运动能调控肠道菌群稳态、改善肠屏障功能、促进短链脂肪酸和胆汁酸分泌、下调血清脂多糖水平、降低氧化应激,进而抑制骨细胞凋亡、抑制破骨细胞分化、促进成骨细胞分化和调节骨细胞营养代谢,防治骨质流失。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||