中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (20): 3252-2358.doi: 10.12307/2024.349
• 组织构建综述 tissue construction review • 上一篇 下一篇
尹功华,徐若瑶,张丽娟,张一凡,齐 洁,张 钧
收稿日期:
2023-05-09
接受日期:
2023-06-19
出版日期:
2024-07-18
发布日期:
2023-09-11
通讯作者:
齐洁,博士,副教授,上海师范大学体育学院,上海市 200234
张钧,博士,教授,上海师范大学体育学院,上海市 200234
作者简介:
尹功华,男,1998年生,上海市人,汉族,上海师范大学在读硕士,主要从事运动与健康促进方向的研究。
基金资助:
Yin Gonghua, Xu Ruoyao, Zhang Lijuan, Zhang Yifan, Qi Jie, Zhang Jun
Received:
2023-05-09
Accepted:
2023-06-19
Online:
2024-07-18
Published:
2023-09-11
Contact:
Qi Jie, PhD, Associate professor, Institute of Physical Education, Shanghai Normal University, Shanghai 200234, China
Zhang Jun, PhD, Professor, Institute of Physical Education, Shanghai Normal University, Shanghai 200234, China
About author:
Yin Gonghua, Master candidate, Institute of Physical Education, Shanghai Normal University, Shanghai 200234, China
Supported by:
摘要:
文题释义:
m6A甲基化修饰:是真核生物mRNA中最丰富的转录后修饰,指以S-腺苷甲硫氨酸为来源的甲基基团转移到核苷酸第6位氮原子的过程,主要通过m6A转移酶、m6A去甲基化酶与m6A阅读蛋白来调控相关分子的表达,参与多种疾病发展。
背景:m6A甲基化修饰非编码RNA是病理性心脏重塑形成机制的研究热点,在心血管疾病的发生发展中起着重要作用。
目的:总结m6A甲基化修饰非编码RNA对调控病理性心肌肥大、心肌细胞死亡、心肌纤维化与血管重塑等病理性心脏重塑主要过程的可能作用机制。结果与结论:①m6A甲基化修饰是一种动态可逆的表观遗传修饰方式;②病理性心脏重塑主要包括病理性心肌肥大、心肌细胞死亡、心肌纤维化、血管重塑,m6A相关酶可调控病理性心脏重塑相关进程;③m6A甲基化修饰相关酶可通过多种非编码RNA与不同信号通路参与调控病理性心脏重塑过程,可作为心血管疾病新的潜在干预方式;④在病理性心脏重塑中,m6A甲基化修饰与非编码RNA之间的调控关系仍处于起步阶段,随着表观遗传学的发展,m6A甲基化修饰非编码RNA来调控病理性心脏重塑有望有新的发展。
https://orcid.org/0009-0000-0930-2310(尹功华)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
尹功华, 徐若瑶, 张丽娟, 张一凡, 齐 洁, 张 钧. m6A甲基化修饰非编码RNA调控病理性心脏重塑的作用[J]. 中国组织工程研究, 2024, 28(20): 3252-2358.
Yin Gonghua, Xu Ruoyao, Zhang Lijuan, Zhang Yifan, Qi Jie, Zhang Jun. Regulation of N6-methyladenosine on non-coding RNAs in pathological cardiac remodeling[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(20): 3252-2358.
[1] 王世强,常芸,饶志坚,等.运动性心脏重塑:microRNA的调节[J].体育科学, 2017,37(11):81-90. [2] 孟昶,朱磊,田雪文,等.运动诱导miRNAs调控PI3K/Akt/mTOR通路防治病理性心肌肥大的研究进展[J].中国体育科技,2021,57(9):67-75. [3] FIGUEIREDO PA, APPELL CORIOLANO HJ, DUARTE JA. Cardiac regeneration and cellular therapy: is there a benefit of exercise? Int J Sports Med. 2014;35(3):181-190. [4] 韩韦钰,赵永超,赵然尊.mRNA m6A甲基化修饰对干细胞生物学特性的影响[J].中国组织工程研究,2023,27(10):1584-1592. [5] TANG Y, CHEN K, SONG B, et al. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome. Nucleic Acids Res. 2021;49(D1):D134-D143. [6] CHEN YS, OUYANG XP, YU XH, et al. N6-Adenosine Methylation (m6A) RNA Modification: an Emerging Role in Cardiovascular Diseases. J Cardiovasc Transl Res. 2021;14(5):857-872. [7] 王剑,杨晓.非编码RNA在心脏稳态维持中的功能和机制[J].生命科学, 2018,30(11):1193-1201. [8] COKER H, WEI G, BROCKDORFF N. m6A modification of non-coding RNA and the control of mammalian gene expression. Biochim Biophys Acta Gene Regul Mech. 2019;1862(3):310-318. [9] DESROSIERS R, FRIDERICI K, ROTTMAN F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974; 71(10):3971-3975. [10] BERULAVA T, BUCHHOLZ E, ELERDASHVILI V, et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail. 2020;22(1):54-66. [11] SHI H, WEI J, HE C. Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Mol Cell. 2019;74(4):640-650. [12] BOKAR JA, RATH-SHAMBAUGH ME, LUDWICZAK R, et al. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem. 1994;269(26):17697-17704. [13] MA Z, LI Q, LIU P, et al. METTL3 regulates m6A in endometrioid epithelial ovarian cancer independently of METTL14 and WTAP. Cell Biol Int. 2020;44(12):2524-2531. [14] PING XL, SUN BF, WANG L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177-189. [15] KNUCKLES P, LENCE T, HAUSSMANN IU, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 2018;32(5-6):415-429. [16] MELSTROM L, CHEN J. RNA N6-methyladenosine modification in solid tumors: new therapeutic frontiers. Cancer Gene Ther. 2020;27(9):625-633. [17] LI J, HAN Y, ZHANG H, et al. The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. Biochem Biophys Res Commun. 2019;512(3):479-485. [18] ZHANG J, GUO S, PIAO HY, et al. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. J Physiol Biochem. 2019;75(3):379-389. [19] BERLIVET S, SCUTENAIRE J, DERAGON JM, et al. Readers of the m6A epitranscriptomic code. Biochim Biophys Acta Gene Regul Mech. 2019;1862(3): 329-342. [20] HUANG H, WENG H, SUN W, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018; 20(3):285-295. [21] ALARCÓN CR, GOODARZI H, LEE H, et al. HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell. 2015;162(6):1299-1308. [22] CHOY M, XUE R, WU Y, et al. Role of N6-methyladenosine Modification in Cardiac Remodeling. Front Cardiovasc Med. 2022;9:774627. [23] THAM YK, BERNARDO BC, OOI JY, et al. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 2015;89(9):1401-1438. [24] ROMERO-BECERRA R, SANTAMANS AM, FOLGUEIRA C, et al. p38 MAPK Pathway in the Heart: New Insights in Health and Disease. Int J Mol Sci. 2020;21(19):7412. [25] DORN LE, LASMAN L, CHEN J, et al. The N6-Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy. Circulation. 2019;139(4): 533-545. [26] LU P, XU Y, SHENG ZY, et al. De-ubiquitination of p300 by USP12 Critically Enhances METTL3 Expression and Ang II-induced cardiac hypertrophy. Exp Cell Res. 2021;406(1):112761. [27] HAN Y, DU T, GUO S, WANG L, et al. Loss of m6A Methyltransferase METTL5 Promotes Cardiac Hypertrophy Through Epitranscriptomic Control of SUZ12 Expression. Front Cardiovasc Med. 2022;9:852775. [28] JU W, LIU K, OUYANG S, et al. Changes in N6-Methyladenosine Modification Modulate Diabetic Cardiomyopathy by Reducing Myocardial Fibrosis and Myocyte Hypertrophy. Front Cell Dev Biol. 2021;9:702579. [29] XU H, WANG Z, CHEN M, et al. YTHDF2 alleviates cardiac hypertrophy via regulating Myh7 mRNA decoy. Cell Biosci. 2021;11(1):132. [30] FANG M, DENG J, ZHOU Q, et al. Maslinic acid protects against pressure-overload-induced cardiac hypertrophy by blocking METTL3-mediated m6A methylation. Aging (Albany NY). 2022;14(6):2548-2557. [31] ZHANG M, CHEN Y, CHEN H, et al. Tanshinone IIA alleviates cardiac hypertrophy through m6A modification of galectin-3. Bioengineered. 2022;13(2):4260-4270. [32] MISHRA PK, ADAMEOVA A, HILL JA, et al. Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol. 2019;317(5):H891-H922. [33] WANG J, ZHANG J, MA Y, et al. WTAP promotes myocardial ischemia/reperfusion injury by increasing endoplasmic reticulum stress via regulating m6A modification of ATF4 mRNA. Aging (Albany NY). 2021;13(8):11135-11149. [34] KE WL, HUANG ZW, PENG CL, et al. m6A demethylase FTO regulates the apoptosis and inflammation of cardiomyocytes via YAP1 in ischemia-reperfusion injury. Bioengineered. 2022;13(3):5443-5452. [35] SONG H, FENG X, ZHANG H, et al. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy. 2019;15(8):1419-1437. [36] PANG P, QU Z, YU S, et al. Mettl14 Attenuates Cardiac Ischemia/Reperfusion Injury by Regulating Wnt1/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021; 9:762853. [37] LI X, YANG Y, CHEN S, et al. Epigenetics-based therapeutics for myocardial fibrosis. Life Sci. 2021;271:119186. [38] LI T, ZHUANG Y, YANG W, et al. Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts. FASEB J. 2021;35(2):e21162. [39] KMIETCZYK V, RIECHERT E, KALINSKI L, et al. m6A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance. 2019;2(2):e201800233. [40] MATHIYALAGAN P, ADAMIAK M, MAYOURIAN J, et al. FTO-Dependent N6-Methyladenosine Regulates Cardiac Function During Remodeling and Repair. Circulation. 2019;139(4):518-532. [41] LIN J, ZHU Q, HUANG J, et al. Hypoxia Promotes Vascular Smooth Muscle Cell (VSMC) Differentiation of Adipose-Derived Stem Cell (ADSC) by Regulating Mettl3 and Paracrine Factors. Stem Cells Int. 2020;2020:2830565. [42] LI N, YI X, HE Y, et al. Targeting Ferroptosis as a Novel Approach to Alleviate Aortic Dissection. Int J Biol Sci. 2022;18(10):4118-4134. [43] 范吉林,朱婷婷,田晓玲,等.非编码RNA调节心肌缺血再灌注损伤中自噬的作用及机制[J].中国组织工程研究,2022,26(35):5716-5723. [44] MA S, CHEN C, JI X, et al. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 2019;12(1):121. [45] QI J, LUO X, MA Z, et al. Downregulation of miR-26b-5p, miR-204-5p, and miR-497-3p Expression Facilitates Exercise-Induced Physiological Cardiac Hypertrophy by Augmenting Autophagy in Rats. Front Genet. 2020;11:78. [46] ZELARAYAN L, GEHRKE C, BERGMANN MW. Role of beta-catenin in adult cardiac remodeling. Cell Cycle. 2007;6(17):2120-2126. [47] LEE CY, KUO WW, BASKARAN R, et al. Increased β-catenin accumulation and nuclear translocation are associated with concentric hypertrophy in cardiomyocytes. Cardiovasc Pathol. 2017;31:9-16. [48] ZHANG R, QU Y, JI Z, et al. METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner. Cell Mol Biol Lett. 2022;27(1):55. [49] BLANKESTEIJN WM, VAN DE SCHANS VA, TER HORST P, et al. The Wnt/frizzled/GSK-3 beta pathway: a novel therapeutic target for cardiac hypertrophy. Trends Pharmacol Sci. 2008;29(4):175-180. [50] LI M, HE HP, GONG HQ, et al. NFATc4 and myocardin synergistically up-regulate the expression of LTCC α1C in ET-1-induced cardiomyocyte hypertrophy. Life Sci. 2016;155:11-20. [51] GAO XQ, ZHANG YH, LIU F, et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nat Cell Biol. 2020;22(11):1319-1331. [52] IZARRA A, MOSCOSO I, LEVENT E, et al. miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Reports. 2014;3(6):1029-1042. [53] QIAN B, WANG P, ZHANG D, et al. m6A modification promotes miR-133a repression during cardiac development and hypertrophy via IGF2BP2. Cell Death Discov. 2021;7(1):157. [54] ISHII N, OZAKI K, SATO H, et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 2006;51(12):1087-1099. [55] YANG Y, MBIKYO MB, ZHANG J, et al. The lncRNA MIAT regulates CPT-1a mediated cardiac hypertrophy through m6A RNA methylation reading protein Ythdf2. Cell Death Discov. 2022;8(1):167. [56] SHEN W, LI H, SU H, et al. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt. Mol Cell Biochem. 2021;476(5):2171-2179. [57] SU Y, XU R, ZHANG R, et al. N6-methyladenosine methyltransferase plays a role in hypoxic preconditioning partially through the interaction with lncRNA H19. Acta Biochim Biophys Sin (Shanghai). 2020;52(12):1306-1315. [58] DI TIMOTEO G, DATTILO D, CENTRÓN-BROCO A, et al. Modulation of circRNA Metabolism by m6A Modification. Cell Rep. 2020;31(6):107641. [59] ZHAO J, LEE EE, KIM J, et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun. 2019;10(1):2300. [60] PARK OH, HA H, LEE Y, et al. Endoribonucleolytic Cleavage of m6A-Containing RNAs by RNase P/MRP Complex. Mol Cell. 2019;74(3):494-507.e8. [61] CHEN RX, CHEN X, XIA LP, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10(1):4695. [62] JAKOBI T, SIEDE D, ESCHENBACH J, et al. Deep Characterization of Circular RNAs from Human Cardiovascular Cell Models and Cardiac Tissue. Cells. 2020; 9(7):1616. [63] WANG L, YU P, WANG J, et al. Downregulation of circ-ZNF609 Promotes Heart Repair by Modulating RNA N6-Methyladenosine-Modified Yap Expression. Research (Wash D C). 2022;2022:9825916. [64] DEL RE DP, AMGALAN D, LINKERMANN A, et al. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol Rev. 2019; 99(4):1765-1817. [65] MENG L, LIN H, HUANG X, et al. METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA. Cell Death Dis. 2022;13(1):38. [66] WANG X, LI Y, LI J, et al. Mechanism of METTL3-Mediated m6A Modification in Cardiomyocyte Pyroptosis and Myocardial Ischemia-Reperfusion Injury. Cardiovasc Drugs Ther. 2023;37(3):435-448. [67] GAO M, MONIAN P, QUADRI N, et al. Glutaminolysis and Transferrin Regulate Ferroptosis. Mol Cell. 2015;59(2):298-308. [68] ZHUANG S, MA Y, ZENG Y, et al. METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis. Cell Biol Toxicol. 2021.doi: 10.1007/s10565-021-09660-7. [69] ZHUANG Y, LI T, HU X, et al. MetBil as a novel molecular regulator in ischemia-induced cardiac fibrosis via METTL3-mediated m6A modification. FASEB J. 2023; 37(3):e22797. [70] PENG T, LIU M, HU L, et al. LncRNA Airn alleviates diabetic cardiac fibrosis by inhibiting activation of cardiac fibroblasts via a m6A-IMP2-p53 axis. Biol Direct. 2022;17(1):32. [71] TANG J, TANG QX, LIU S. METTL3-modified lncRNA-SNHG8 binds to PTBP1 to regulate ALAS2 expression to increase oxidative stress and promote myocardial infarction. Mol Cell Biochem. 2023;478(6):1217-1229. [72] HUANG S, ZHANG L, SONG J, et al. Long noncoding RNA MALAT1 mediates cardiac fibrosis in experimental postinfarct myocardium mice model. J Cell Physiol. 2019;234(3):2997-3006. [73] LIU HL, CHEN CH, SUN YJ. Overexpression of lncRNA GAS5 attenuates cardiac fibrosis through regulating PTEN/MMP-2 signal pathway in mice. Eur Rev Med Pharmacol Sci. 2019;23(10):4414-4418. [74] LIU P, ZHANG B, CHEN Z, et al. m6A-induced lncRNA MALAT1 aggravates renal fibrogenesis in obstructive nephropathy through the miR-145/FAK pathway. Aging (Albany NY). 2020;12(6):5280-5299. [75] LI X, LI Y, WANG Y, et al. The m6A demethylase FTO promotes renal epithelial-mesenchymal transition by reducing the m6A modification of lncRNA GAS5. Cytokine. 2022;159:156000. [76] YU BT, YU N, WANG Y, et al. Role of miR-133a in regulating TGF-β1 signaling pathway in myocardial fibrosis after acute myocardial infarction in rats. Eur Rev Med Pharmacol Sci. 2019;23(19):8588-8597. [77] VERJANS R, PETERS T, BEAUMONT FJ, et al. MicroRNA-221/222 Family Counteracts Myocardial Fibrosis in Pressure Overload-Induced Heart Failure. Hypertension. 2018;71(2):280-288. [78] ZHOU Y, DENG L, ZHAO D, et al. MicroRNA-503 promotes angiotensin II-induced cardiac fibrosis by targeting Apelin-13. J Cell Mol Med. 2016;20(3):495-505. [79] LI C, LI J, XUE K, et al. MicroRNA-143-3p promotes human cardiac fibrosis via targeting sprouty3 after myocardial infarction. J Mol Cell Cardiol. 2019;129:281-292. [80] LANG M, OU D, LIU Z, et al. LncRNA MHRT Promotes Cardiac Fibrosis via miR-3185 Pathway Following Myocardial Infarction. Int Heart J. 2021;62(4):891-899. [81] YAO L, ZHOU B, YOU L,et al. LncRNA MIAT/miR-133a-3p axis regulates atrial fibrillation and atrial fibrillation-induced myocardial fibrosis. Mol Biol Rep. 2020; 47(4):2605-2617. [82] GUO F, TANG C, HUANG B, et al. LncRNA H19 Drives Proliferation of Cardiac Fibroblasts and Collagen Production via Suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β Axis. Mol Cells. 2022;45(3):122-133. [83] YANG F, QIN Y, LV J, et al. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis. 2018;9(10):1000. [84] LI XX, MU B, LI X, et al. circCELF1 Inhibits Myocardial Fibrosis by Regulating the Expression of DKK2 Through FTO/m6A and miR-636. J Cardiovasc Transl Res. 2022;15(5):998-1009. [85] ZHANG BY, HAN L, TANG YF, et al. METTL14 regulates M6A methylation-modified primary miR-19a to promote cardiovascular endothelial cell proliferation and invasion. Eur Rev Med Pharmacol Sci. 2020;24(12):7015-7023. [86] SUN P, WANG C, MANG G, et al. Extracellular vesicle-packaged mitochondrial disturbing miRNA exacerbates cardiac injury during acute myocardial infarction. Clin Transl Med. 2022;12(4):e779. |
[1] | 余伟杰, 刘爱峰, 陈继鑫, 郭天赐, 贾易臻, 冯汇川, 杨家麟. 机器学习在腰椎间盘突出症诊治中的优势和应用策略[J]. 中国组织工程研究, 2024, 28(9): 1426-1435. |
[2] | 林泽玉, 徐 林. 痛风致骨破坏机制的研究与进展[J]. 中国组织工程研究, 2024, 28(8): 1295-1300. |
[3] | 刘建宏, 廖世杰, 李波香, 唐生平, 韦帧翟, 丁晓飞. 细胞外囊泡携带非编码RNA调控破骨细胞的活化[J]. 中国组织工程研究, 2024, 28(7): 1076-1082. |
[4] | 刘 涛, 何志军, 李金鹏, 宋 渊, 姚兴璋, 陈 文, 李 岩, 白璧辉. 糖尿病神经病变过程中非编码RNA的作用及机制[J]. 中国组织工程研究, 2024, 28(7): 1124-1129. |
[5] | 张克凡, 石 辉. 细胞因子治疗骨关节炎的研究现状及应用前景[J]. 中国组织工程研究, 2024, 28(6): 961-967. |
[6] | 徐 溶, 王豪杰, 耿梦想, 孟 凯, 王 卉, 张克勤, 赵荟菁. 多孔聚四氟乙烯人工血管制备及功能化改性研究的进展[J]. 中国组织工程研究, 2024, 28(5): 759-765. |
[7] | 陈小芳, 郑国爽, 李茂源, 于炜婷. 可注射海藻酸钠水凝胶的制备及应用[J]. 中国组织工程研究, 2024, 28(5): 789-794. |
[8] | 刘 闯, 单 烁, 于腾波, 周 欢, 杨 磊. 骨科止血材料临床应用的优势、不适与面临的挑战[J]. 中国组织工程研究, 2024, 28(5): 795-803. |
[9] | 李佳琪, 黄元礼, 李 妍, 王春仁, 韩倩倩. 非交联透明质酸分子质量降解的机制及影响因素[J]. 中国组织工程研究, 2024, 28(5): 747-752. |
[10] | 张 明, 王 斌, 贾 凡, 陈 杰, 唐 玮. 基于脑电图的脑机接口技术在脑卒中患者上肢运动功能康复中的应用[J]. 中国组织工程研究, 2024, 28(4): 581-586. |
[11] | 何远杰, 陈宇恒, 赵永超, 王正龙. 表观遗传调控血管平滑肌细胞重塑在主动脉瘤发生发展中的作用[J]. 中国组织工程研究, 2024, 28(4): 602-608. |
[12] | 马思聪 , 陈 晶, 李云庆. 结缔组织生长因子在神经系统中的功能与作用[J]. 中国组织工程研究, 2024, 28(4): 615-620. |
[13] | 闫炳翰, 李志超, 苏 辉, 薛海鹏, 徐展望, 谭国庆. 中药单体靶向自噬治疗骨关节炎的作用机制[J]. 中国组织工程研究, 2024, 28(4): 627-632. |
[14] | 王欣怡, 谢宪瑞, 陈玉杰, 王晓宇, 徐小青, 沈怿弘, 莫秀梅. 软组织和硬组织再生过程中的电纺纳米纤维支架[J]. 中国组织工程研究, 2024, 28(3): 426-432. |
[15] | 龙俊东, 史业弘, 王 成, 陈世玖. 不同冷冻技术对同种异体血管移植排斥反应的影响[J]. 中国组织工程研究, 2024, 28(3): 433-438. |
1.1.4 检索途径 主题词检索、关键词检索、摘要检索、全文检索等,中英文数据库检索策略,见图1。
1.3 文献质量评估与数据提取 初步共检索到504篇相关文献,排除会议论文、研究重复、与主题不相关的文献,最终纳入86篇文献,其中中文文献5篇,英文文献81篇。文献检索流程见图2。
#br#
文题释义:
m6A甲基化修饰:是真核生物mRNA中最丰富的转录后修饰,指以S-腺苷甲硫氨酸为来源的甲基基团转移到核苷酸第6位氮原子的过程,主要通过m6A转移酶、m6A去甲基化酶与m6A阅读蛋白来调控相关分子的表达,参与多种疾病发展。心血管疾病是威胁人类生命健康的主要因素,其中病理性心脏重塑作为心血管疾病的重要特征和发生过程,已引起学界对其形成机制的广泛研究。病理性心脏重塑包括病理性心肌肥大、心肌细胞死亡、心肌纤维化与血管纤维化等过程。m6A甲基化修饰作为表观修饰的一种是近年来的研究热点,m6A转移酶与m6A去甲基化酶介导的m6A甲基化修饰及m6A阅读蛋白的识别过程,在病理性心脏重塑过程中发挥重要调控作用。此外,随着高通量测序技术的发展,多种非编码RNA存在丰富的m6A甲基化修饰位点,但目前病理性心脏重塑中对于非编码RNA的m6A甲基化修饰有待深入探索,相关报道并不多见。因此,该综述以m6A甲基化修饰非编码RNA为研究视角,阐述了m6A甲基化修饰非编码RNA可能通过多种潜在分子或信号通路对病理性心脏重塑起到正/反向效应,为心血管疾病的诊疗提供了新的参考。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||