[1] BONNER M, FRESNO M, GIRONÈS N, et al. Reassessing the Role of Entamoeba gingivalis in Periodontitis. Front Cell Infect Microbiol. 2018;8:379.
[2] LI X, SUN X, ZHANG X, et al. Enhanced Oxidative Damage and Nrf2 Downregulation Contribute to the Aggravation of Periodontitis by Diabetes Mellitus. Oxid Med Cell Longev. 2018;2018:9421019.
[3] KIM AR, KIM JH, KIM A, et al. Simvastatin attenuates tibial bone loss in rats with type 1 diabetes and periodontitis. J Transl Med. 2018;16(1):306.
[4] MESSER JG, JIRON JM, MENDIETA CALLE JL, et al. Zoledronate treatment duration is linked to bisphosphonate-related osteonecrosis of the jaw prevalence in rice rats with generalized periodontitis. Oral Dis. 2019;25(4):1116-1135.
[5] FRÖHLICH LF. Micrornas at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration. Cells. 2019; 8(2): E121.
[6] LIU Z, CHANG H, HOU Y, et al. Lentivirus‑mediated microRNA‑26a overexpression in bone mesenchymal stem cells facilitates bone regeneration in bone defects of calvaria in mice. Mol Med Rep. 2018;18(6):5317-5326.
[7] FENG Q, ZHENG S, ZHENG J. The emerging role of microRNAs in bone remodeling and its therapeutic implications for osteoporosis. Biosci Rep. 2018;38(3): BSR20180453.
[8] LI X, ZHENG Y, ZHENG Y, et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway. Stem Cell Res Ther. 2018;9(1):232.
[9] PANAGOPOULOS PK, LAMBROU GI. Bone erosions in rheumatoid arthritis: recent developments in pathogenesis and therapeutic implications. J Musculoskelet Neuronal Interact. 2018; 18(3):304-319.
[10] KAGIYA T, NAKAMURA S. Expression profiling of microRNAs in RAW264.7 cells treated with a combination of tumor necrosis factor alpha and RANKL during osteoclast differentiation. J Periodontal Res. 2013;48(3):373-385.
[11] BEHERA J, TYAGI N. Exosomes: mediators of bone diseases, protection, and therapeutics potential. Oncoscience. 2018;5(5-6): 181-195.
[12] DU L, RONG H, CHENG Y, et al. Identification of microRNAs dysregulated in CD14 gene silencing RAW264.7 macrophage cells. Inflammation. 2014;37(1):287-294.
[13] SHI B, WANG Y, ZHAO R, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit+ cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis. PLOS ONE. 2018; 13(2): e0191616.
[14] JIANG J, SONG Z, ZHANG L. miR-155-5p Promotes Progression of Acute Respiratory Distress Syndrome by Inhibiting Differentiation of Bone Marrow Mesenchymal Stem Cells to Alveolar Type II Epithelial Cells. Med Sci Monit. 2018;24:4330-4338.
[15] ZIMMERMAN SM, HEARD-LIPSMEYER ME, DIMORI M, et al. Loss of RANKL in osteocytes dramatically increases cancellous bone mass in the osteogenesis imperfecta mouse (oim). Bone Rep. 2018;9:61-73.
[16] SILVA AM, ALMEIDA MI, TEIXEIRA JH, et al. Profiling the circulating miRnome reveals a temporal regulation of the bone injury response. Theranostics. 2018;8(14):3902-3917.
[17] CUI H, HE Y, CHEN S, et al. Macrophage-Derived miRNA- Containing Exosomes Induce Peritendinous Fibrosis after Tendon Injury through the miR-21-5p/Smad7 Pathway. Mol Ther Nucleic Acids. 2019;14:114-130.
[18] HU CH, SUI BD, DU FY, et al. miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep. 2017;7:43191.
[19] SONG N, ZHANG T, XU X, et al. miR-21 Protects Against Ischemia/Reperfusion-Induced Acute Kidney Injury by Preventing Epithelial Cell Apoptosis and Inhibiting Dendritic Cell Maturation. Front Physiol. 2018;9:790.
[20] KÖLLING M, KAUCSAR T, SCHAUERTE C, et al. Therapeutic miR-21 Silencing Ameliorates Diabetic Kidney Disease in Mice. Mol Ther. 2017;25(1): 165-180.
[21] LI X, DAI Y, XU J. MiR-21 promotes pterygium cell proliferation through the PTEN/AKT pathway. Mol Vis. 2018;24:485-494.
[22] CHENG VK, AU PC, TAN KC, et al. MicroRNA and Human Bone Health. JBMR Plus. 2018;3(1):2-13.
[23] ENGSTRÖM M, ERIKSSON K, LEE L, et al. Increased citrullination and expression of peptidylarginine deiminases independently of P. gingivalis and A. actinomycetemcomitans in gingival tissue of patients with periodontitis. J Transl Med. 2018;16(1):214.
[24] CORRÊA MG, PIRES PR, RIBEIRO FV, et al. Systemic treatment with resveratrol reduces the progression of experimental periodontitis and arthritis in rats. PLoS One. 2018;13(10):e0204414.
[25] SU P, TIAN Y, YANG C, et al. Mesenchymal Stem Cell Migration during Bone Formation and Bone Diseases Therapy. Int J Mol Sci. 2018;19(8): E2343.
[26] FARRELL KB, KARPEISKY A, THAMM DH, et al. Bisphosphonate conjugation for bone specific drug targeting. Bone Rep. 2018;9: 47-60.
[27] ALIKHANI M, ALIKHANI M, ALANSARI S, et al. Therapeutic effect of localized vibration on alveolar bone of osteoporotic rats. PLoS One. 2019;14(1): e0211004.
[28] CHIN KY. The Relationship between Follicle-stimulating Hormone and Bone Health: Alternative Explanation for Bone Loss beyond Oestrogen. Int J Med Sci. 2018;15(12):1373-1383.
[29] OWEN R, REILLY GC. In vitro Models of Bone Remodelling and Associated Disorders. Front Bioeng Biotechnol. 2018;6:134.
[30] PERRI R, NARES S, ZHANG S, et al. MicroRNA modulation in obesity and periodontitis. J Dent Res. 2012;91(1):33-38.
[31] SAITO A, HORIE M, EJIRI K, et al. MicroRNA profiling in gingival crevicular fluid of periodontitis-a pilot study. FEBS Open Bio. 2017; 7(7):981-994.
[32] DEBNATH S, YALLOWITZ AR, McCormick J, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature. 2018;562(7725):133-139.
[33] LUAN X, ZHOU X, NAQVI A, et al. MicroRNAs and immunity in periodontal health and disease. Int J Oral Sci. 2018;10(3):24.
[34] ZOU YC, GAO YP, YIN HD, et al. Serum miR-21 expression correlates with radiographic progression but also low bone mineral density in patients with ankylosing spondylitis: a cross-sectional study. Innate Immun. 2019;25(5):314-321.
[35] LI D, HUANG S, ZHU J, et al. Exosomes from MiR-21-5p-Increased Neurons Play a Role in Neuroprotection by Suppressing Rab11a-Mediated Neuronal Autophagy In Vitro After Traumatic Brain Injury. Med Sci Monit. 2019;25:1871-1885.
[36] CANFRÁN-DUQUE A, ROTLLAN N, ZHANG X, et al. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Mol Med. 2017; 9(9):1244-1262.
[37] CHEN Y, CHEN J, WANG H, et al. HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathog. 2013;9(4):e1003248.
[38] QING D, ZHANG X, ZHANG X, et al. Propofol inhibits proliferation and epithelial-mesenchymal transition of MCF-7 cells by suppressing miR-21 expression. Artificial Cells, Nanomedicine, and Biotechnology. 2019; 1(47):1265-1271.
[39] JIN H, LI DY, CHERNOGUBOVA E, et al. Local Delivery of miR-21 Stabilizes Fibrous Caps in Vulnerable Atherosclerotic Lesions. Mol Ther. 2018; 26(4):1040-1055.
[40] ZHAO J, TANG N, WU K, et al. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS One. 2014;9(10):e108005.
[41] ZENG YL, ZHENG H, CHEN QR, et al. Bone marrow-derived mesenchymal stem cells overexpressing MiR-21 efficiently repair myocardial damage in rats. Oncotarget. 2017;8(17):29161-29173.
[42] HU CH, SUI BD, DU FY, et al. miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep. 2017;7:43191.
|