中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (52): 7844-7850.doi: 10.3969/j.issn.2095-4344.2016.52.013

• 材料生物相容性 material biocompatibility • 上一篇    下一篇

单晶硅材料微型圆柱体直径及其排列间距对神经干细胞分化的影响

闫东东1,高兴华2,熊  轶1
  

  1. 1深圳北京大学香港科技大学医学中心,广东省深圳市  518036;2上海大学材料基因组工程研究院,上海市  200444
  • 收稿日期:2016-09-28 出版日期:2016-12-16 发布日期:2016-12-16
  • 通讯作者: 熊轶,博士,副研究员,硕士生导师,深圳北京大学香港科技大学医学中心,广东省深圳市 518036
  • 作者简介:闫东东,男,1988年生,河北省沧州市人,壮族,深圳北京大学香港科技大学医学中心在读硕士,主要从事干细胞与神经系统疾病研究。
  • 基金资助:

    广东省自然科学基金博士启动项目(2014A030310422),项目名称:微流控弹性基质合成及在肝组织硬度模拟中的软物质细胞研究

Effects of diameters and spacing of silicon micro pillars on the differentiation of neural stem cells

Yan Dong-dong1, Gao Xing-hua2, Xiong Yi1
  

  1. 1Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China; 2Materials Genome Institute of Shanghai University, Shanghai 20444, China
  • Received:2016-09-28 Online:2016-12-16 Published:2016-12-16
  • Contact: Xiong Yi, M.D., Associate researcher, Master’s supervisor, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China
  • About author:Yan Dong-dong, Studying for master’s degree, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China
  • Supported by:

    the Doctoral Startup Project of Natural Science Foundation of Guangdong Province, No. 2014A030310422

摘要:

文章快速阅读:

 

文题释义:
细胞外基质的微结构:
细胞外基质的表面微结构对于神经干细胞分化的影响是一个重要的研究方向,可以将细胞外基质的微结构在体外介质表面抽象为两大类:各向同性(如圆柱体:pillar)和各向异性(如条纹:grating)。将不同规格的形态微结构以矩阵的形式设计到一个较小的材料上,对细胞进行高通量研究,既节约时间和试剂,还能严格的在控制其他变量,从而得到严谨的数据结果,进而指导临床生物材料的设计。
调控神经干细胞命运的外界因素:可分为生物化学信号和生物物理信号,其中生物理信号越来越多的受到关注。生物理信号来自于细胞外基质,例如细胞外基质的微结构、细胞外基质的弹性及细胞外基质传递给细胞的机械力等。其中,最简单的生物理信号可能是细胞外基质的表面微结构,并且细胞外基质表面微结构对于神经干细胞分化起着非常重要的作用。

背景:研究表明,不同结构类型的矩阵模型(例如条纹、空洞及圆柱体等)对神经干细胞分化有不同的影响。
目的:探讨微型圆柱体直径及其排列间距等物理信号对神经干细胞分化的影响。
方法:采用光刻法在单晶硅表面刻蚀出不同直径和间距的微型圆柱体(直径与间距各有2.5,5,10,    20 µm 4个规格),将纯化的原代神经干细胞种植在16种微型圆柱体上,体外培养7 d后,运用免疫荧光及实时定量PCR等技术观察神经干细胞分化为神经元样细胞的情况。
结果与结论:①在直径固定的情况下:微型圆柱体间距在2.5-10 μm范围内变化时,随着间距的增大,神经干细胞分化率有增大的趋势;②在间距固定的情况下:微型圆柱体直径在2.5-20 μm范围内变化时,随着圆柱体直径的增大,神经干细胞的分化率越来越小;③对比各组发现,直径为2.5 μm、间距为10 μm的微型圆柱体对于神经干细胞分化为神经元样细胞的促进作用最明显;④结果表明:在特定规格的微型圆柱体(圆柱体直径较小并其间距较大)上培养神经干细胞能促进其分化为神经元样细胞,这对于研发组织工程支架材料有着重要的提示作用。

关键词: 生物材料, 材料相容性, 微型圆柱体, 神经干细胞, 分化率, 直径, 间距, 广东省自然科学基金

Abstract:

BACKGROUND: Different structures of matrix models, such as grating, holes and pillars make different effects on the differentiation of neural stem cells.
OBJECTIVE: To explore the effects of the diameter and spacing, known as physical signals of micro pillars on neural stem cell differentiation.
METHODS: Micro pillars with different diameters and spacing, both of which had four dimensions of 2.5, 5, 10 and 20 μm, were fabricated on silicon substrates by photolithographic method. Purified primary neural stem cells were incubated on the each micro pillar for 7 days in vitro. Then the differentiation of neural stem cells into neuron-like cells was observed using immunofluorescence staining and quantitative real-time PCR.
RESULTS AND CONCLUSION: When the diameters of the micro pillars were constant and the spacing of micro pillars varied in the range of 2.5-10 μm, the differentiation rate of neural stem cells increased with the spacing increase. When the spacing was invariable and the diameters changed in the range of 2.5-20 μm, the differentiation rate of neural stem cells declined with the diameter increase. Especially, the micro pillars with 2.5 μm diameter and 10 μm spacing significantly promoted the differentiation of neural stem cells into neuron-like cells. These results show that specific micro pillars with small diameters and large spacing facilitate the differentiation of neural stem cells, thus providing guidance for developing tissue-engineered scaffolds. 

Key words: Extracellular Matrix, Neural Stem Cells, Tissue Engineering

中图分类号: