中国组织工程研究 ›› 2015, Vol. 19 ›› Issue (47): 7655-7659.doi: 10.3969/j.issn.2095-4344.2015.47.020

• 纳米生物材料 nanobiomaterials • 上一篇    下一篇

抗凝血纳米壳聚糖微球的合成、表征及生物安全性评价

王子婧1,刘朝阳1,钱智勇2,高德伟1,郭希民2   

  1. 1解放军总医院南楼综合外科,北京市  100853;2解放军军事医学科学院,北京市  100040
  • 收稿日期:2015-08-25 出版日期:2015-11-19 发布日期:2015-11-19
  • 通讯作者: 高德伟,主任医师,解放军总医院南楼综合外科,北京市100853 郭希民,副研究员,解放军军事医学科学院,北京市 100040
  • 作者简介:王子婧,女,1990年生,黑龙江省双鸭山市人,汉族,解放军总医院在读硕士,主要从事老年呼吸研究。

Anticoagulant chitosan nanoparticles: synthesis, characterization and biological safety

Wang Zi-jing1, Liu Chao-yang1, Qian Zhi-yong2, Gao De-wei1, Guo Xi-min2   

  1. 1Department of Integrated Surgery, South Building, Chinese PLA General Hospital, Beijing 100853, China; 2Academy of Military Medical Sciences of Chinese PLA, Beijing 100040, China
  • Received:2015-08-25 Online:2015-11-19 Published:2015-11-19
  • Contact: Gao De-wei, Chief physician, Department of Integrated Surgery, South Building, Chinese PLA General Hospital, Beijing 100853, China Guo Xi-min, Associate researcher, Academy of Military Medical Sciences of Chinese PLA, Beijing 100040, China
  • About author:Wang Zi-jing, Studying for master’s degree, Department of Integrated Surgery, South Building, Chinese PLA General Hospital, Beijing 100853, China

摘要:

 背景:有研究显示,壳聚糖等天然多糖经磺化改性后具有类似肝素的抗凝功能,因磺酸化后的壳聚糖其形成的磺酸根基团与肝素的活性基团相似,具有良好的抗凝血性。
目的:制备具有抗凝血功能的纳米壳聚糖微球,检测其形态结构、理化性能及生物安全性。
方法:利用乳相法合成纳米壳聚糖微球,通过磺化反应合成磺酸化壳聚糖微球,通过透射电镜描述其形态特征,红外光谱观察其特异基团峰值变化。①凝血实验:分别将肝素、纳米壳聚糖微球及10,30,50 mg磺酸化壳聚糖微球加入SD大鼠血中,检测凝血指标。②溶血实验:分别将去离子水、生理盐水及10,30,50 g/L磺酸化壳聚糖微球浸提液加入兔2%红细胞悬液中,检测溶血率。③细胞毒性实验:分别采用含体积分数10%胎牛血清的DMEM培养基及10,30,50 g/L磺酸化壳聚糖微球的浸提液培养人脐静脉血管内皮细胞,72 h后检测细胞相对增殖率及毒性分级。
结果与结论:扫描电镜显示磺酸化壳聚糖微球具有良好的形态结构,粒径大小50 nm,红外图谱提示存在磺化取代。体外凝血实验表明磺酸化壳聚糖微球具有显著抗凝血作用,抗凝血效果呈剂量效应关系。磺酸化壳聚糖微球符合国标关于溶血率小于5%的安全标准,无致溶血性。细胞毒性实验表明磺酸化壳聚糖微球浸提液无明显细胞毒性,其生物安全性符合国家标准。
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

关键词: 生物材料, 纳米材料, 壳聚糖, 微载体, 磺酸化, 抗凝血, 生物安全性

Abstract:

BACKGROUND: Studies have shown that chitosan and other natural polysaccharides have heparin-like anticoagulant function after sulfonated modification. Sulfonated chitosan has good anticoagulant property because the sulfonate group formed by sulfonated chitosan is similar with the active group of heparin.

OBJECTIVE: To prepare the anticoagulant chitosan nanoparticles and to detect its morphology, physical and chemical properties and biological security.
METHODS: Chitosan nanoparticles were synthesized by emulsion-chemical cross link. Sulfonated chitosan nanoparticles were synthesized by sulfonation reaction. Its morphology was described by transmission electron microscope. The peak-value change of its specific groups was observed by infrared spectroscopy. (1) Coagulation experiment: Heparin, chitosan nanoparticles and 10, 30 and 50 mg of sulfonated chitosan nanoparticles were added into the blood of Spraque-Dawley rats. The coagulation indicators were detected. (2) Hemolysis experiment: deionized water, physiological saline and 10, 30, 50 g/L sulfonated chitosan nanoparticles extracts were added into 2% red blood cell suspension of rabbits. The hemolysis rate was detected. (3) Cytotoxicity experiments: DMEM medium containing fetal bovine serum and 10, 30, 50 g/L sulfonated chitosan nanoparticle extracts were used to culture human umbilical vein endothelial cells. Cell relative growth rate and toxicity grading were detected after 72 hours.
RESULTS AND CONCLUSION: Scanning electron microscopy showed that sulfonated chitosan nanoparticles had good morphology, with a diameter of 50 nm. Infrared spectroscopy showed that the sulfonated replacement occurred. In vitro coagulation experiments showed that sulfonated chitosan nanoparticles had significant anticoagulant effects in a dose-dependent manner. Sulfonated chitosan nanoparticles meet the national safety standard for hemolysis rate of less than 5%, non-induced hemolysis property. Cytotoxicity assays showed that sulfonated chitosan nanoparticles extracts had no significant cytotoxicity, and its biological safety was in line with the national standards. 
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

Key words: Chitosan, Nanostructures, Microspheres, Tissue Engineering