中国组织工程研究 ›› 2021, Vol. 25 ›› Issue (15): 2321-2328.doi: 10.3969/j.issn.2095-4344.3810

• 数字化骨科 digital orthopedics • 上一篇    下一篇

新型股骨颈内固定系统治疗不稳定性股骨颈骨折的有限元分析

范智荣1,苏海涛2,周  霖1,黄晖达1,周俊德1,江  涛2,刘子桃2   

  1. 1广州中医药大学第二临床医学院,广东省广州市   510405;2广州中医药大学第二附属医院骨科,广东省广州市   510006
  • 收稿日期:2020-06-10 修回日期:2020-06-16 接受日期:2020-07-20 出版日期:2021-05-28 发布日期:2021-01-04
  • 通讯作者: 苏海涛,教授,主任医师,广州中医药大学第二附属医院骨科,广东省广州市 510006
  • 作者简介:范智荣,男,1994年生,广东省肇庆市人,汉族,广州中医药大学在读硕士,主要从事中医药防治骨科疾病方面的研究。
  • 基金资助:
    广东省自然科学基金项目(2018A030313694);项目负责人:江涛

Finite element analysis of novel femoral neck system for unstable femoral neck fractures

Fan Zhirong1, Su Haitao2, Zhou Lin1, Huang Huida1, Zhou Junde1, Jiang Tao2, Liu Zitao2    

  1. 1The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China; 2Department of Orthopedics, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China 
  • Received:2020-06-10 Revised:2020-06-16 Accepted:2020-07-20 Online:2021-05-28 Published:2021-01-04
  • Contact: Su Haitao, Professor, Chief physician, Department of Orthopedics, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
  • About author:Fan Zhirong, Master candidate, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China
  • Supported by:
     the Natural Science Foundation of Guangdong Province, No. 2018A030313694 (to JT) 

摘要:

文题释义:
股骨颈内固定系统装置结构:在股骨颈内固定系统模型结构的近端置入一枚与锁定钢板成130°角的直径为10 mm的动力髋螺钉,在同一套筒中置入一枚锁定防旋螺钉,此锁定防旋螺钉的直径为6.4 mm,并与主螺钉成7.5°角,使主钉与锁定防旋螺钉形成钉中钉结构。在股骨颈内固定系统模型的远端置入2枚5 mm的锁定螺钉,使其连接锁定钢板与股骨干。
股骨颈骨折Pauwels分型:PAUWELS根据股骨颈骨折在冠状面中骨折线与髋臼上缘的夹角小于为30°分为PauwelsⅠ型,介于30°-50°为Ⅱ型,夹角大于50°为Ⅲ型骨折。Pauwels角度越大骨折线越接近垂直,骨折端存在的剪切力越大,股骨颈骨折端越不稳定,术后不愈合率越高。中青年患者发生Pauwels Ⅲ型股骨颈骨折通常是由高能量创伤引起。

背景:股骨颈骨折的治疗策略包括空心螺钉固定、动力髋螺钉固定、髓内钉固定、锁定钢板固定和髋关节置换等,然而目前对于Pauwels Ⅲ型股骨颈骨折的最佳治疗方法仍存在争议。
目的:通过采用三维有限元方法分析新型股骨颈内固定系统(femoral Neck System,FNS)治疗不稳定性股骨颈骨折生物力学特征。
方法:选择1名岁青年健康志愿者的股骨CT影像学资料,并将其导入到医学三维重建软件Mimics 21.0中,得到原始股骨三维模型;将模型输出为STL格式文件并导入到Geomagic Wrap 2017软件中进行优化,构建股骨皮质骨与松质骨结构;将优化后的模型导入至Solidworks 2017软件中,通过布尔运算重建Pauwels Ⅲ型股骨颈骨折三维模型,Pauwels角度分别设定为50°,60°和70°;使用Solidworks2017软件,按照临床上应用的内固定尺寸大小建模,建立3种内部固定模型(股骨颈内固定系统、正三角形空心螺钉、倒三角形空心螺钉);最后使用Abaqus 2017软件进行网格划分、施加载荷和数据计算,分析各模型股骨与内固定的应力分布、应力峰值和最大位移。
结果与结论:①无论是何种角度的骨折,3种内固定模型中的股骨近端应力主要分布在内侧股骨距附近,并向四周扩散,其中倒三角形空心螺钉组的应力最大,股骨颈内固定系统组最小;②无论是何种角度的骨折,3种内固定模型中的内固定装置应力主要分布在骨折线附近螺钉中间表面,其中倒三角形空心螺钉组的应力最小,股骨颈内固定系统组最大;③无论是何种角度的骨折,3种内固定模型中的股骨位移峰值主要集中在股骨头顶端,其中倒三角形空心螺钉组的位移峰值最大,股骨颈内固定系统组最小;④无论是何种角度的骨折,3种内固定模型中的内固定装置位移峰值主要在螺钉顶部,其中正三角形空心螺钉组位移峰值最大,股骨颈内固定系统组最小;⑤结果表明,股骨颈内固定系统治疗治疗不稳定性股骨颈骨折的生物力学稳定性中优于空心螺钉,内固定失效风险较空心螺钉低。
https://orcid.org/0000-0002-5259-5160 (范智荣) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 骨, 内固定, 骨折, 股骨颈, 股骨颈骨折, 内固定系统, 有限元分析, 生物力学

Abstract: BACKGROUND: Treatment strategies for femoral neck fractures include cannulated screw fixation, dynamic hip screw fixation, intramedullary nail fixation, locking plate fixation, and hip replacement. However, the best treatment for Pauwels type III femoral neck fractures is still controversial.   
OBJECTIVE: To analyze the biomechanical characteristics of a novel femoral neck system for unstable femoral neck fractures by using a three-dimensional finite element analysis method. 
METHODS: The CT imaging data of the femur of a healthy volunteer were selected and imported into the medical three-dimensional reconstruction software Mimics 21.0 to obtain the original three-dimensional model of the femur. The model was exported to an STL format file and imported into the Geomagic Wrap2017 software for optimization so as to construct femoral cortical bone and cancellous bone structure. The optimized model was imported into Solidworks2017 software, and the 3D model of Pauwels type III femoral neck fracture was reconstructed through Boolean operation. The Pauwels angles are set to 50°, 60° and 70°, respectively. Solidworks2017 software was used to establish three types of internal fixation models (femoral neck system, positive triangular hollow screw, and inverted triangular hollow screw) based on clinical fixation procedures and engineering geometric data modeling. Finally, Abaqus2017 software was used for meshing. After applying load and data calculation, the stress distribution, peak stress and maximum displacement of femur and internal fixation were analyzed in each model. 
RESULTS AND CONCLUSION: (1) No matter what the angle of the fracture, the stress of the proximal femur in the three internal fixation models was mainly distributed near the medial femoral talus and spread to the surroundings. Among them, the inverted-triangular hollow screw group had the largest stress. The femoral neck system group had the smallest stress. (2) Regardless of the angle of the fracture, the stress of the internal fixation device in the three internal fixation models was mainly distributed on the middle surface of the screw near the fracture line, and the inverted triangle hollow screw group had the least stress, and the femoral neck system group had the largest stress. (3) No matter what the angle of the fracture, the peak displacement of the femur in the three internal fixation models was mainly concentrated on the top of the femoral head. Among them, the peak displacement was the largest in the inverted triangular hollow screw group, and the smallest in the femoral neck system group. (4) No matter what angle of fracture, the peak displacement of the internal fixation device in the three internal fixation models was mainly at the top of the screw. The peak displacement was the largest in the positive triangle hollow screw group, and the smallest in the femoral neck system group. (5) The results show that the biomechanical stability of the femoral neck system for the treatment of unstable femoral neck fractures is better than that of hollow screws, and the risk of internal fixation failure is lower than that of hollow screws. 


Key words: bone, internal fixation, fracture, femoral neck, femoral neck fracture, internal fixation system, finite element analysis, biomechanics 

中图分类号: