中国组织工程研究 ›› 2017, Vol. 21 ›› Issue (17): 2678-2683.doi: 10.3969/j.issn.2095-4344.2017.17.009

• 干细胞移植 stem cell transplantation • 上一篇    下一篇

超声介导一氧化氮微泡辅助骨髓间充质干细胞移植治疗心肌梗死

陈  飞1,许  澎1,乔  祺1,樊  冰2,童嘉毅3,范国峰4   

  1. 1复旦大学附属上海市第五人民医院心内科,上海市  200240;2复旦大学附属中山医院心内科,上海市  200032;3东南大学附属中大医院心内科,江苏省南京市  210007;4南京大学医学院附属鼓楼医院急诊中心,江苏省南京市  210008
  • 修回日期:2017-03-08 出版日期:2017-06-18 发布日期:2017-06-29
  • 通讯作者: 范国峰,硕士,主治医师,南京大学医学院附属鼓楼医院急诊中心,江苏省南京市 210008
  • 作者简介:陈飞,男,1980年生,江苏省如东县人,汉族,2015年复旦大学上海医学院毕业,硕士,医师,主要从事冠心病的诊疗与研究。
  • 基金资助:

    国家自然科学基金(81070265/H0222):江苏省卫生厅青年科研课题(Q201306);南京市医学科技发展基金(YKK16100);上海市闵行区自然科学基金(2014MHZ037)

Ultrasound mediated nitric oxide microbubbles enhance the therapeutic efficacy of bone marrow mesenchymal stem cell transplantation on myocardial infarctions

Chen Fei1, Xu Peng1, Qiao Qi1, Fan Bing2, Tong Jia-yi3, Fan Guo-feng4   

  1. 1Department of Cardiology, Fifth People’s Hospital of Fudan University, Shanghai 200240, China; 2Department of Cardiology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; 3Department of Cardiology, Zhongda Hospital of Southeast University, Nanjing 210007, Jiangsu Province, China; 4Emergency Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
  • Revised:2017-03-08 Online:2017-06-18 Published:2017-06-29
  • Contact: Fan Guo-feng, Master, Attending physician, Emergency Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
  • About author:Chen Fei, Master, Physician, Department of Cardiology, Fifth People’s Hospital of Fudan University, Shanghai 200240, China
  • Supported by:

    the National Natural Science Foundation of China, No. 81070265/H0222; the Youth Scientific Research Project of Jiangsu Provincial Health Department, No. Q201306; the Medial Science Development Fund of Nanjing Gity, No. YKK161000; the Natural Science Foundation of Minhang District of Shanghai, No. 2014MHZ037

摘要:

文章快速阅读:

文题释义:
一氧化氮微泡:
一氧化氮是体内重要的第二信使,在心血管系统具有调节血压、扩张血管、抑制血小板聚集和白细胞黏附、抑制血管平滑肌细胞增殖等作用。但一氧化氮半衰期短、极易被氧化,影响其临床应用。通过生物工程技术构建核心为一氧化氮的功能微泡,超声作用下单个微泡在体内可释放1.7 fmol一氧化氮,扩张血管、增加血流的效应可持续2.0-3.0 h。
干细胞移植治疗心肌梗死效果差可能与下列因素有关:合并心血管危险因素的冠心病患者的干细胞数量、迁移、黏附、增殖和分化能力下降;移植干细胞心肌内归巢数量少,移植细胞心肌内存活并分化的数量更少。

 

摘要
背景:
多项实验研究发现,超声联合微泡干预能够增强干细胞移植治疗心肌梗死后心力衰竭的效果,具有良好的应用前景。但超声介导一氧化氮微泡经冠脉移植骨髓间充质干细胞治疗大型动物心肌梗死是否具有同样的效果仍不明确。
目的:探讨超声介导一氧化氮微泡与冠脉移植骨髓间充质干细胞治疗家猪心肌梗死的有效性及可能机制。 
方法:①密度梯度离心法分离、培养、鉴定家猪骨髓间充质干细胞,CM-Dil体外标记骨髓间充质干细胞;②经介入法球囊封堵猪左冠状动脉前降支成功建立24只家猪心肌梗死模型,随机分为PBS组、骨髓间充质干细胞组、超声介导声诺维微泡组、超声介导一氧化氮微泡组(n=6)。于造模后1周进行如下干预:PBS组经冠脉注射10 mL PBS,骨髓间充质干细胞组将骨髓间充质干细胞(约1×107)用10 mL PBS稀释后经冠脉缓慢注射;超声介导声诺维微泡组经冠脉注入声诺维微泡0.1 mL/kg,同时超声干预(1 MHz、2 W/cm2)2 min,然后将骨髓间充质干细胞(约1×107)用10 mL PBS稀释后经冠脉缓慢注射;超声介导一氧化氮微泡组移植方法及条件同超声介导声诺维微泡组,仅将声诺维微泡换作一氧化氮微泡;③干预后48 h随机处死每组各3只家猪,取梗死区心肌组织作冰冻切片,计数比较各组缺血心肌内荧光标记阳性骨髓间充质干细胞。4周后对每组剩余家猪行M型心脏超声观察比较各组左心室收缩功能。心功能检测结束后处死所有家猪,取梗死区心肌组织行石蜡切片及苏木精-伊红染色,计数比较各组心肌缺血区的毛细血管密度。

结果与结论:①与超声介导声诺维微泡组及骨髓间充质干细胞组比较,超声介导一氧化氮微泡组CM-Dil阳性骨髓间充质干细胞数增多,差异有显著性意义(P < 0.05);②与超声介导声诺维微泡组、骨髓间充质干细胞组及PBS组比较,超声介导一氧化氮微泡组左室射血分数值有显著改善,差异有显著性意义(P < 0.05);③与超声介导声诺维微泡组、骨髓间充质干细胞组及PBS组比较,超声介导一氧化氮微泡组平均毛细血管密度显著增多,差异有显著性意义(P < 0.05);④结果表明,超声介导一氧化氮微泡与冠脉移植骨髓间充质干细胞联合治疗可以改善家猪急性心肌梗死后的左心收缩功能,可能与超声介导一氧化氮微泡促进骨髓间充质干细胞向心肌缺血区归巢以及局部血管生成有关。

 

 

ORCID:0000-0002-2635-6019(范国峰)

关键词: 干细胞, 移植, 骨髓间充质干细胞, 心肌梗死, 超声, 一氧化氮微泡, 国家自然科学基金

Abstract:

BACKGROUND: Recent experimental studies have found ultrasound mediated microbubbles potentiate stem cell therapy in myocardial infarction (MI)-induced heart failure, indicating a good application prospect. But whether ultrasound mediated nitric oxide (NO) microbubbles also have the same effect in the intracoronary transplantation of bone marrow mesenchymal stem cells (BMSCs) for treatment of large animals with MI is still unknown.

OBJECTIVE: To investigate the effectiveness and possible mechanism of ultrasound mediated NO microbubbles in potentiating intracoronally transplanted BMSCs homing to the infarcted area in a MI pig model.
METHODS: Density gradient centrifugation culture method was used in the isolation and cultivation of BMSCs. CM-Dil was used to label BMSCs in vitro. Twenty-four pigs were used to make MI models by blocking the left anterior descending coronary artery, and then were divided into PBS group, BMSCs group, ultrasound+microbubbles+BMSCs (MB) group, ultrasound+NO microbubbles+BMSCs (NO-MB) group(n=6 per group). In the PBS group, 10 mL of PBS was intracoronally injected. In the BMSCs group, about 1×107 BMSCs were diluted in 10 mL of PBS and then intracoronally infused. In the MB group, 0.1 mL/kg sulphur hexafluoride microbubbles (Sono Vue) was intracoronally injected together with ultrasound treatment (1 MHz, 2 W/cm2, 2 minutes), followed by intracoronary infusion of about 1×107 BMSCs that were diluted in 10 mL of PBS. In the NO-MB group, all methods and conditions were identical to those in the MB group except only 0.1 mL/kg of Sono Vue was replaced by 0.1 mL/kg NO microbubbles. Three pigs were sacrificed in each group 48 hours after CM-Dil positive BMSCs transplantation. The labeled BMSCs were observed and counted by fluorescent microscope after frozen sectioning of the infarct area. We assessed and compared left ventricular systolic function with M-mode ultrasound among groups at 4 weeks after intervention. After cardiac function test, the rest pigs were sacrificed and capillary density in the myocardial ischemic area was counted and compared after hematoxylin-eosin staining.

RESULTS AND CONCLUSION: (1) The number of CM-Dil positive cells in the area of MI in the NO-MB group was much more than that in the MB group and BMSCs group with statistical significance (P < 0.05). (2) The left ventricle systolic function was significantly improved in the NO-MB group as compared with the MB group (P < 0.05). The same trend was observed between NO-MB group and BMSCs group as well as between NO-MB group and PBS group (P < 0.05). (3) The density of capillaries increased significantly in the NO-MB group compared with the MB group, BMSCs group and PBS group, respectively. To conclude, ultrasound mediated NO microbubble combined with intracoronary BMSCs transplantation can improve the left ventricular systolic function. The possible mechanism could be that ultrasound- mediated NO mocrobubbles promote the homing of transplanted BMSCs to the myocardial ischemia area as well as improve local angiogenesis.

 

 

Key words: Myocardial Infarction, Bone Marrow, Mesenchymal Stem Cell Transplantation, Nitric Oxide, Microbubbles, Sonication, Tissue Engineering

中图分类号: