中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (13): 1932-1938.doi: 10.3969/j.issn.2095-4344.2016.13.015

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

基于有限元分析腰椎内固定的生物力学特征

陶 勇,吴云乐,宗少晖,李柯柯,杜 力,彭小明,施雄志,胡溪源   

  1. 广西医科大学第一附属医院脊柱骨病外科,广西壮族自治区南宁市   530000
  • 收稿日期:2016-02-22 出版日期:2016-03-25 发布日期:2016-03-25
  • 通讯作者: 宗少晖,硕士生导师,教授,主任医师,广西医科大学第一附属医院脊柱骨病外科,广西壮族自治区南宁市 530000
  • 作者简介:陶勇,男,1982年生,安徽省合肥市人,汉族,广西医科大学在读硕士,主要从事脊柱外科学方面的研究。 并列第一作者:吴云乐,男,1989年生,山东省济宁市人,汉族,广西医科大学在读硕士,主要从事脊柱外科学方面研究。

Biomechanical characteristics of lumbar vertebra fixation based on finite element analysis

Tao Yong, Wu Yun-le, Zong Shao-hui, Li Ke-ke, Du Li, Peng Xiao-ming, Shi Xiong-zhi, Hu Xi-yuan   

  1. Department of Spine Osteopathia, the First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
  • Received:2016-02-22 Online:2016-03-25 Published:2016-03-25
  • Contact: Zong Shao-hui, Master’s supervisor, Professor, Chief physician, Department of Spine Osteopathia, the First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
  • About author:Tao Yong, Studying for master’s degree, Department of Spine Osteopathia, the First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China Wu Yun-le, Studying for master’s degree, Department of Spine Osteopathia, the First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China Tao Yong and Wu Yun-le contributed equally to this paper

摘要:

文章快速阅读:

文题释义:

脊柱钉棒内固定:脊柱手术为维持脊柱稳定性,防止脊柱失稳而常于术中采用的内固定方式。通过钉棒内固定的置入可使脊柱活动度降低,获得即刻的脊柱稳定,广泛应用于脊柱相关的各种疾病如骨折、脊柱结核等。钉棒内固定使脊柱受力发生变化,常致相邻节段退行性改变。
腰椎全椎板切除:不仅破坏了腰椎骨性结构,而且相关软组织如棘间韧带、棘上韧带和黄韧带等结构亦被移除,腰椎稳定性的破坏将导致术后腰椎不稳、脊柱滑脱或腰椎后凸畸形等并发症的发生概率增加。

 

背景:后路椎板切除常使脊柱稳定性丧失,故术中多需要使用钉棒内固定技术维持腰椎稳定性。利用有限元分析可以模拟脊柱修复术后脊柱及内固定系统受力情况。
目的:构建脊柱腰椎L1-L3三维有限元模型,运用三维有限元方法分析全椎板切除及双侧椎弓根螺钉置入后脊柱稳定性变化和应力分布情况。
方法:采集1例成年健康男性志愿者L1-L3 CT数据,应用Mimics14.01、3-matic(V6.0)、Ansys 15.0等软件构建L1-L3完整有限元模型(A组)、L2行全椎板切除后L1-L3有限元模型(B组)、L2全椎板切除后双侧单节段椎弓根螺钉内固定系统有限元模型(C组)。模拟腰椎行前屈、后伸、侧弯及旋转,分别对3个模型进行有限元分析。

结果与结论:①根据不同运动状态下的VonMises最大应力比较可知,B组最大应力大于A组(P < 0.05),C组最大应力大于B组(P < 0.05)。②根据不同运动状态下的最大位移可知,B组最大位移大于A组(P < 0.05),C组最大位移小于A、B组(P < 0.05)。③提示椎板切除后椎体局部受力增加,尤以椎板、椎弓根及关节处增加明显,椎体活动范围增加,影响椎体稳定性;内固定可使椎体活动度减小,使腰椎应力集中于螺钉,椎板及椎弓根应力减小,椎体稳定性增加。过大的应力集中于钉棒系统会增加断钉风险。 

ORCID: 0000-0002-9277-3603 (陶勇)

关键词: 骨科植入物, 脊柱植入物, 腰椎, 椎板切除, 椎弓根螺钉, 有限元, 脊柱, 生物力学, Mimics

Abstract:

BACKGROUND: Posterior lamina resection often causes loss of spinal stability, so screw rod internal fixation technology is needed to maintain the stability of lumbar spine. Finite element analysis can be used to simulate the stress distribution of the spine and internal fixation system after spinal surgery.
OBJECTIVE: To build three-dimensional finite element model of spinal L1 to L3, analyze the spinal stability and stress distribution after the total laminectomy and insertion of bilateral pedicle screw using finite element method.
METHODS: L1-L3 CT data could be collected from an adult healthy male volunteer. Mimics14.01, 3-matic(V6.0) and Ansys 15.0 could be used to set up the intact lumbar spine finite element model of L1-L3 (group A), the L1-L3 finite element model after L2 total laminectomy (group B), and the finite element model of L2 total laminectomy and insertion of bilateral pedicle screw (group C). We used software to simulate flexion, extension, lateral bending and axial rotation, and three kinds of models received finite element analysis.
RESULTS AND CONCLUSION: (1) Based on the maximum of Von Mises under different motion states, the maximum stress was significantly lower in group A than in group B (P < 0.05). The maximum stress was significantly lower in group B than in group C (P < 0.05). (2) Based on the total deformation under different motion states, the total deformation was significantly lower in group A than in group B (P < 0.05). The total deformation was significantly lower in group C than in groups A and B (P < 0.05). (3) After the total laminectomy, vertebral body stress increased, especially in the lamina, pedicle and joints. The range of motion of the vertebral body increased, which influenced the stability of the vertebral body. Internal fixation could decrease range of motion. Stress concentrated on the screw. Stress on the vertebral plate and pedicle decreased. The stability of vertebral body increased. Excessive stress concentrated on screw system will increase the risk of screw breakage.