[1] Litonjua LA, Andreana S, Bush PJ, et al. Non carious cervical lesions and Abfractions: A Re-evalution. J Am Dent Assoc. 2003;134(7):845-850.
[2] 刘彦,牛忠英,石馨,等.2038例中老年人健康体检中牙齿楔形缺损的调查和分析[J].牙体牙髓牙周病学杂志, 2010,20(11): 645-647.
[3] Bergstrom J, Eliasson S. Cervical abrasion to relation to tooth brushing and periodontal health. Scand J Pent Res. 1988;96 (5): 405-411.
[4] Rees JS. The biomechanics of abfraction. Proc Inst Mech Eng H. 2006;220(1):69-80.
[5] Shetty SM, Shetty RG, Mattigatti S. No carious cervical lesion: abfraction. J Int Oral Health. 2013;5(5):143-146
[6] 杨文丽,林雪峰,朱娟芳,等.人工楔状缺损对牙颈部硬组织应力分布的影响[J].华西口腔医学杂志,2011,29(2):118-123.
[7] Senna P, Edl Bel Cruy A, Rösing C. Non-carious cervical lesions and occlusion: a systematic review of clinical studies. J Oral Rehabil. 2012;39(6):450-462.
[8] Murakami N, Wakabayashi N. Finite element contact analysis as a critical technique in dental biomechanics. J Prosthodont Res. 2014;58(2):92-101.
[9] 杨文丽,林雪峰,李相如,等.人工楔状缺损牙颈部硬组织应力分布的有限元接触分析[J].上海口腔医学,2012,21(4)407-411.
[10] Ma H, Wang Q, Liu Z, et al. The influence of lateral occlusal forces to the stress distribution of restorative material of wedge-shaped defect.Hua Xi Kou Qiang Yi Xue Za Zhi. 2011; 29(5):550-554.
[11] Rees JS, Hammadeh M. Undermining of enamel as a mechanism of abfraction lesion formation: a finite element study. Eur J Oral Sci. 2004;112(4):347-352.
[12] 杨文丽,林雪峰,刘耀鹏.釉牙本质界潜行性破坏对牙颈部硬组织应力分布的影响[J].中国组织工程研究,2014,18(7):1015-1020.
[13] Dietschi D, Duc O, Krejci I, et al. Biomechanical considerations for the restoration of endodontically treated teeth: a systematic review of the literature, PartⅡ (Evaluation of fatigue behavior, interfaces, and in vivo studies). Quintessence Int. 2008;39(2):117-129.
[14] 许琳,朱文军,程绍华,等.纤维桩对复合树脂修复根管治疗后磨牙影响的有限元研究[J].中华口腔医学研究杂志, 2014,8(1): 18-22.
[15] 李向荣,邱建平,郭爱军.玻璃纤维桩复合树脂核在楔状缺损露髓基牙中应用的临床观察[J].北京口腔医学,2012,20(1):48-49.
[16] 王惠芸.我国人牙的测量与统计[J].中华口腔科杂志, 1959,3(2): 149-155.
[17] Guimarães JC, Guimarães Soella G, Brandão Durand L, et al. Stress amplifications in dental non-carious cervical lesions. J Biomech. 2014;47(2):410-416.
[18] 庄茁,由小川,廖剑晖,等.基于ABAQUS的有限元分析和应力[M].北京:清华大学出版社,2009.
[19] Borcic J, Anic I, Urek MM, et al. The prevalence of non-carious cervical lesions in permanent dentition. J Oral Rehabil. 2004;31(2):117-123.
[20] Soares PV, Souza LV, Verissimo C, et al. Effect of root morphology on biomechanical behavior of premolars associated with abfraction lesion and different loading types. J Oral Rehabil. 2014;41(2):108-114.
[21] Salameh Z, Ounsi HF, Aboushelib MN, et al. Effect of different onlay systems on fracture resistance and failure pattern of endodontically treated mandibular molars restored with and without glass fiber posts. Am J Dent. 2010;23(2):81-86.
[22] 徐娟,刘洪臣,王延荣,等.下颌前磨牙创伤咬合点加载的三维有限元应力分析[J].口腔颌面修复学杂志,2001,2(1):8-10.
[23] 李苏伶,付钢,王璐.不同载荷角度下后牙残根核桩冠修复后三维有限元应力分析[J].重庆医科大学学报,2009,34(3):342-345.
[24] 皮昕.口腔解剖生理学(第6版)[M].北京:人民卫生出版社,2007.
[25] 王惠芸,陈一怀,刘继光,等.生理牙合咬合接触点的计算机图像分析[J].实用口腔医学杂志,1997,13(1):37-40.
[26] Okada D, Miura H, Suzuki C, et al. Stress distribution in roots restored with different types of post systems with composite resin. Dent Mater J. 2008;27(4):605-611.
[27] Pegoretti A, Fambri L, Zappini G, et al. Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials. 2002;23(13):2667-2682
[28] Cheng ZJ, Wang XM, Ge J, et al. The mechanical anisotropy on a longitudinal section of human enamel studied by nanoindentation. J Mater Sci Mater Med. 2010;21(6): 1811-1816.
[29] 徐韵,陆卫青.牙合力与深度对楔状缺损修复疗效影响的有限元分析[J].同济大学学报(医学版)2011,32(5):57-60.
[30] Costa A, Xavier T, Noritomi P, et al. The influence of elastic modulus of inlay materials on stress distribution and fracture of premolars. Oper Dent. 2014;39(4):E160-E170.
[31] Oyar P, Ulusoy M, Eskita?ç?o?lu G. Finite element analysis of stress distribution in ceramic crowns fabricated with different tooth preparation designs. J Prosthet Dent. 2014.
[32] Murakami K, Yamamoto K, Tsuyuki M, et al. Theoretical efficacy of preventive measures for pathologic fracture after surgical removal of mandibular lesions based on a three-dimensional finite element analysis. J Oral Maxillofac Surg. 2014;72(4):833.
[33] Durmu? G, Oyar P. Effects of post core materials on stress distribution in the restoration of mandibular second premolars: A finite element analysis. J Prosthet Dent. 2014 .
[34] Cui C, Sun J. Optimizing the design of bio-inspired functionally graded material (FGM) layer in all-ceramic dental restorations. Dent Mater J. 2014;33(2):173-178.
[35] Oyar P. The effects of post-core and crown material and luting agents on stress distribution in tooth restorations. J Prosthet Dent. 2014.
[36] O'Brien S, Shaw J, Zhao X, et al. Size dependent elastic modulus and mechanical resilience of dental enamel. J Biomech. 2014;47(5):1060-1066.
[37] Belli S, Eraslan O, Eraslan O, et al. Effects of NaOCl, EDTA and MTAD when applied to dentine on stress distribution in post-restored roots with flared canals. Int Endod J. 2014.
[38] Costa A, Xavier T, Noritomi P, et al. The Influence of Elastic Modulus of Inlay Materials on Stress Distribution and Fracture of Premolars. Oper Dent. 2014.
[39] Lazari PC, Oliveira RC, Anchieta RB, et al. Stress distribution on dentin-cement-post interface varying root canal and glass fiber post diameters. A three-dimensional finite element analysis based on micro-CT data. J Appl Oral Sci. 2013;21(6): 511-517.
[40] Zhao L, Li LJ, Zhao K, et al. Finite element analysis of first maxillary molars restored with different post and core materials. Shanghai Kou Qiang Yi Xue. 2013;22(6):607-12.
[41] Park JW, Ferracane JL. Water aging reverses residual stresses in hydrophilic dental composites. J Dent Res. 2014;93(2):195-200.
[42] Bicalho AA, Valdívia AD, Barreto BC, et al. Incremental filling technique and composite material--part II: shrinkage and shrinkage stresses. Oper Dent. 2014;39(2):E83-92.
[43] Belli S, Eraslan Ö, Eraslan O, et al. Effect of restoration technique on stress distribution in roots with flared canals: an FEA study. J Adhes Dent. 2014;16(2):185-191.
[44] Petcu CM, Ni?oi D, Mercu? V, et al. Masticatory tensile developed in upper anterior teeth with chronic apical periodontitis. A finite-element analysis study. Rom J Morphol Embryol. 2013;54(3):587-592.
[45] Feitosa SA, Corazza PH, Cesar PF, et al. Pressable feldspathic inlays in premolars: effect of cementation strategy and mechanical cycling on the adhesive bond between dentin and restoration. J Adhes Dent. 2014;16(2):147-154.
[46] He L, Liu L, Gao B, et al. Finite element analysis of the stress distribution of two-piece post crown with different adhesives. Hua Xi Kou Qiang Yi Xue Za Zhi. 2013;31(4):348-352.
[47] Su KC, Chuang SF, Ng EY, et al. An investigation of dentinal fluid flow in dental pulp during food mastication: simulation of fluid-structure interaction. Biomech Model Mechanobiol. 2014; 13(3):527-535.
[48] Lü LW, Meng GW, Liu ZH. Finite element analysis of multi-piece post-crown restoration using different types of adhesives. Int J Oral Sci. 2013;5(3):162-166.
[49] Afroz S, Tripathi A, Chand P, et al. Stress pattern generated by different post and core material combinations: a photoelastic study. Indian J Dent Res. 2013;24(1):93-97.
[50] 缪羽,于蕴之,李婧,等.桩核对牙冠完整的上颌第一前磨牙的应力影响[J].口腔颌面修复学杂志,2012,13(1):30-33.
[51] Ona M, Wakabayashi N, Yamazaki T,et al. The influence of elastic modulus mismatch between tooth and post and core restorations on root fracture. Int Endod J. 2013;46(1):47-52. |