中国组织工程研究 ›› 2014, Vol. 18 ›› Issue (22): 3517-3522.doi: 10.3969/j.issn.2095-4344.2014.22.013

• 数字化骨科 digital orthopedics • 上一篇    下一篇

股骨远端骨折锁定钢板螺钉布局的有限元分析

林振恩,谢 丹,张 森   

  1. 厦门大学附属福州第二医院,福建省福州市 350007
  • 修回日期:2014-03-19 出版日期:2014-05-28 发布日期:2014-05-28
  • 作者简介:林振恩,男,1978年生,福建省福清市人,汉族,2002年中山医科大学毕业,主治医师,主要从事创伤骨科方面的研究。
  • 基金资助:

    福州市科技计划项目(2012-S-155-9)

Finite element analysis of screw layout of locking plate for treating the distal femur fracture

Lin Zhen-en, Xie Dan, Zhang Sen   

  1. Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, Fujian Province, China
  • Revised:2014-03-19 Online:2014-05-28 Published:2014-05-28
  • About author:Lin Zhen-en, Attending physician, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, Fujian Province, China
  • Supported by:

    the Fuzhou Municipal Science and Technology Project, No. 2012-S-155-9

摘要:

背景:股骨远端骨折主要使用股骨远端锁定钢板进行内固定,内固定的失效屡有报道,临床对钢板上的螺钉分布意见不一,螺钉的分布和内固定失效是否相关,缺乏力学的实验依据。

目的:探讨治疗股骨远端骨折锁定钢板的合理螺钉布局。
方法:通过ANSYS软件建模,建立骨折和钢板模型,骨折近端、远端均固定4枚螺钉,设计128种不同的螺钉布局方案,分析不同的螺钉、钢板应力和骨折位移,进行第1,6孔单皮质固定组、双螺钉固定组的单因素方差分析;以及第5孔单皮质固定组、双皮质固定组、无螺钉固定组的单因素方差分析。

结果与结论:128种螺钉分布中,第1孔螺钉应力最大的分布是“-2分布组”(-2表示第2孔无螺钉固定),应力最小的分布是“-4分布组”(-4表示第4孔无螺钉固定);第5孔螺钉应力最大的分布为“-4分布组”,应力最小的分布为“-3分布组”(-3表示第3孔无螺钉固定);第6孔螺钉应力最大的分布为“-4分布组”,应力最小的分布为“-2分布组”;钢板的应力最大的分布为“-4分布组”,应力最小的分布为“-5分布组”(-5表示第5孔无螺钉固定);骨折的位移最大的分布为“-5分布组”,位移最小的分布为“-3分布组”。128种螺钉分布中,第1,6孔单皮质固定组和双皮质固定组螺钉、钢板应力和骨折位移对比差异无显著性意义;第5孔单皮质固定组、双皮质固定组、无螺钉固定组对比,无螺钉固定组的骨折位移显著大于其他两组(P < 0.05),3组螺钉应力和钢板应力差异无显著性意义。提示钢板最近端第1,2孔需固定;靠近骨折端的近端2个孔(例如文章的第4,5孔),第4孔必须固定,根据骨折稳定性判断是否固定第5孔;中间的孔可不固定;第6孔建议固定。ANSYS分析是有效的骨科临床分析方法。


中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程


全文链接:

关键词: 植入物, 数字化骨科, 股骨骨折, 有限元, 螺钉布局, 内固定, 钢板断裂

Abstract:

BACKGROUND: Distal femoral fractures mainly used distal femoral locking plate as internal fixation. The failure of internal fixation has been frequently reported. The distribution of steel screws was controversial in the clinic. Whether the distribution of screws was associated with the failure of internal fixation lacks of experimental evidence on mechanics.

OBJECTIVE: To investigate the screw layout of locking plates for treating the distal femoral fracture.
METHODS: By using ANSYS software modeling, fractures and plate models were established. Four screws were fixed on the proximal and distal ends of fracture. 128 kinds of screw layout were designed. Stress and fracture displacement of different screws and plates were analyzed. Screw holes 1 and 6 fixed single and double cortex groups were analyzed using one-way analysis of variance. Screw hole 5 fixed single and double cortex groups and no screw group were analyzed using one-way analysis of variance.
RESULTS AND CONCLUSION: In the distribution of 128 kinds of screws, maximum stress of the first hole was “-2 distribution group” (-2 means hole 2 without screw), and minimum stress distribution was “-4 distribution group” (-4 means hole 4 without screw). Biggest stress distribution of fifth hole was “-4 distribution group”, and  minimum stress distribution was “-3 distribution group” (-3 means hole 3 without screw). The distribution of the maximum stress in the screw hole 6 was “-4 distribution group”, and minimum stress distribution was “-2 distribution group”. The distribution of maximum stress in the plate was “-4 distribution group”, and minimum stress distribution was “-5 distribution group” (-5 means hole 5 without screw). The distribution of the maximum displacement was “-5 distribution group”, minimum distribution was “-3 distribution group”. Of the 128 kinds of screws, no significant difference was detected in screws, plate stress and fracture displacement in the first and sixth holes of single and double cortex distributed groups. Fracture displacement in no screw group was bigger than in hole 5 single and double cortex groups (P < 0.05). No significant difference was detectable in screw stress and plate stress among the three groups. Results indicated that the proximal first hole and second hole in the plate should be fixed. Two holes were close to the proximal end of the fracture (for example holes 4 and 5). The hole 4 should be fixed. Whether the hole 5 should be fixed was judged according to the stability of the fracture. The middle hole could not be fixed. The hole 6 was recommended to be fixed. ANSYS analysis is an effective orthopedic clinical research method.

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程


全文链接:

Key words: femoral fractures, finite element analysis, internal fixators, biomechanics

中图分类号: