中国组织工程研究 ›› 2018, Vol. 22 ›› Issue (14): 2146-2151.doi: 10.3969/j.issn.2095-4344.0844

• 组织工程骨及软骨材料 tissue-engineered bone and cartilage materials • 上一篇    下一篇

纳米级细胞型组织工程人工骨的构建:修复下颌骨缺损

李冬梅1,刘新晖2,李庆星1   

  1. 1河北医科大学第一医院口腔科,河北省石家庄市 050031;2南京市江宁医院骨科,江苏省南京市 211100
  • 收稿日期:2018-02-07 出版日期:2018-05-18 发布日期:2018-05-18
  • 通讯作者: 李冬梅,河北医科大学第一医院口腔科,河北省石家庄市 050031
  • 作者简介:李冬梅,女,1970年生,河北省阳原县人,汉族,1992年河北医科大学毕业,副主任医师,主要从事口腔疾病诊治的研究。
  • 基金资助:

    河北省医学科学研究指导课题计划项(08069),课题名称:新型纳米生物材料修复下颌骨骨缺损的动物实验研究

Constructing nanosized cell-type tissue-engineered bone for repair of mandibular bone defects

Li Dong-mei1, Liu Xin-hui2, Li Qing-xing1   

  1. 1Department of Stomatology, First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei Province, China; 2Department of Orthopedics, Jiangning Hospital of Nanjing, Nanjing 211100, Jiangsu Province, China
  • Received:2018-02-07 Online:2018-05-18 Published:2018-05-18
  • Contact: Li Dong-mei, Department of Stomatology, First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei Province, China
  • About author:Li Dong-mei, Associate chief physician, Department of Stomatology, First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei Province, China
  • Supported by:

    the Medical Research Guidance Project of Hebei Province, No. 08069

摘要:

文章快速阅读:

 

文题释义:
骨小梁数量:是指给定长度内骨组织与非骨组织的交点数量,可理解为每毫米距离内有多少数量的骨小梁。发生骨质疏松时,骨小梁数量减小。
纳米生物技术:是指用于研究生命现象的纳米技术,它是纳米技术和生物学的结合,同时也是一门涉及物理学、化学、量子学、机械学、材料学、电子学、计算机学、生物学、医学等众多领域的综合性交叉学科。
 
 
背景:研究表明将纳米级细胞型组织人工骨用于修复下颌骨缺损能发挥干细胞与纳米级材料的优势,是较佳的生物支架材料,能加速骨及软组织形成。
目的:探讨纳米级细胞型组织人工骨构建方法及在下颌骨缺损中的应用效果。
方法:取1只新西兰大白兔,利用离心法获得骨髓基质干细胞,定向诱导为成骨细胞。取制备好的纳米相羟基磷灰石胶原复合材料,将3×108 L-1成骨细胞10 μL接种到复合材料上共同培养,制备纳米级细胞型组织人工骨。另取20只新西兰大白兔,在下颌体部位制作大小为15 mm×8 mm的单侧洞穿型骨缺损模型,随机数字法分为对照组(n=10)和人工骨组(n=10)。对照组不植入任何材料,人工骨组植入纳米级细胞型组织人工骨,比较2组修复效果。

结果与结论:①倒置显微镜下可见成骨细胞沿着材料边缘生长,且随着培养时间的延长,细胞数量增加;②扫描电镜结果显示:纳米级细胞型组织人工骨材料表面可见大量细胞黏附,细胞呈梭形、多边形,细胞生长良好;③人工骨组植入后4周缺损部位缩小;植入后8周下颌骨缺损部位消失,与周围组织无明显界限;对照组植入后4周缺损部位大小变化不明显;8周时缺损部位缩小,与周围组织边界清晰;④人工骨组修复后4,8周骨密度、骨小梁厚度及骨小梁数显著高于对照组(P < 0.05);⑤人工骨组修复后4周,缺损部位存在较多新生骨,8周时可见大量成熟骨细胞;对照组修复后4,8周可见缺损部位存在少许成骨细胞,骨成熟度低;⑥结果提示,将制备的纳米级细胞型组织人工骨植入新西兰大白兔下颌骨缺损处,可明显促进缺损部位愈合,修复效果理想。

ORCID: 0000-0002-1694-2647(李冬梅) 

关键词: 羟基磷灰石, 胶原复合材料, 纳米级细胞型组织人工骨, 骨缺损模型, 下颌骨缺损, 修复效果, 离心法, 脊髓间质干细胞, 种子细胞

Abstract:

 BACKGROUND: Nanosized cell-type tissue-engineered bone is a good scaffold material possessing the merits of stem cells and nanomaterials to fabricate bone and soft tissue formation.

OBJECTIVE: To explore the method of constructing nano-sized cell-type tissue-engineered bone and to explore its application in the repair of mandibular bone defects.
METHODS: One New Zealand white rabbit was taken to isolate bone marrow stromal stem cells by centrifugation. Then, the cells were induced to differentiate into osteoblasts. Osteoblasts (3×108 /L, 10 μL) were inoculated into the prepared nano-phase hydroxyapatite/collagen composite to produce the nano-sized cell-type tissue-engineered bone. Another 20 New Zealand white rabbits were taken to make a unilateral puncture-type bone defect model of 15 mm×8 mm. These model rabbits were thereafter randomized into control and artificial bone groups (n=10 per group), followed by no intervention and implantation of nano-sized cell-type tissue-engineered bone, respectively. Repair effects were compared between the two groups.
RESULTS AND CONCLUSION: (1) Under the inverted microscope, osteoblasts grew along the material in each group, and the number of cells increased with the prolongation of the culture time. (2) Under the scanning electron microscope, a large number of spindle- or polygon-shaped adherent cells grew well on the surface of the tissue-engineered bone. (3) The defect in the artificial bone group was lessened at 4 weeks after implantation and disappeared at 8 weeks after implantation, and there was no clear boundary with the surrounding tissue. In the control group, the defect size changed little at 4 weeks and reduced at 8 weeks after implantation, and a clear boundary with the surrounding tissue was observed. (4) Bone density, trabecular thickness and trabecular number were significantly higher in the artificial bone group than the control group at 4 and 8 weeks after implantation (P < 0.05). (5) At 4 weeks after implantation, many new bones at the defect site were detected in the artificial bone group, and a large number of mature bone cells were visible at 8 weeks. In the control group, a few osteoblasts were found at the defect site with low bone maturation at 4 and 8 weeks after implantation. These findings suggest that the implantation of nanosized cell-type tissue-engineered bone into the defect site can considerably promote defect healing and achieve ideal repair effects. 

Key words: Hydroxyapatites, Collagen, Mesenchymal Stem Cells, Mandible, Tissue Engineering

中图分类号: