中国组织工程研究 ›› 2018, Vol. 22 ›› Issue (10): 1523-1528.doi: 10.3969/j.issn.2095-4344.0710

• 组织工程口腔材料 tissue-engineered oral materials • 上一篇    下一篇

颧下嵴区微植体不同高度支抗远移上牙列位移的生物力学分析

杨建浩,韩  璐,李亚茹,张月兰
  

  1. 郑州大学第一附属医院,河南省郑州市  450001
  • 收稿日期:2017-12-10 出版日期:2018-04-08 发布日期:2018-04-08
  • 通讯作者: 杨建浩,硕士,副主任医师,郑州大学第一附属医院,河南省郑州市 450001
  • 作者简介:杨建浩,男,1976年生,河南省原阳县人,汉族,2006年暨南大学毕业,硕士,副主任医师,主要从事口腔正畸学研究。
  • 基金资助:
    河南省科技厅基础与前沿技术研究项目(142300410088)

Biomechanical analysis of micro-implant anchorage in the infrazygomatic crest for the distal displacement of the upper dentition at different heights

Yang Jian-hao, Han Lu, Li Ya-ru, Zhang Yue-lan
  

  1. The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
  • Received:2017-12-10 Online:2018-04-08 Published:2018-04-08
  • Contact: Yang Jian-hao, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
  • About author:Yang Jian-hao, Master, Associate chief physician, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
  • Supported by:
    the Basic and Frontier Technology Project of Science and Technology Department of Henan Province, No. 142300410088

摘要:

文章快速阅读:

 

文题释义:
微植体支抗:是将微型钛螺钉种植体植入牙槽骨做牙齿移动的支抗单位,其具有操作较为简单、使用方便、创伤小和出血少、把持力高、位置选择范围较广等优点,能有效牵拉牙齿向垂直移动等优点,对于支抗远移牙列作用较好,被较多口腔正畸医师所采用。该方法矫正畸形牙齿的速度快、疗程短,效果明显,可使一些常规方法得不到满意疗效的疑难病例获得满意疗效。
颧下嵴区微植体:颧下嵴位于上颌第一磨牙的上方,有研究表明,此处植入微种植钉比在上颌其他部位植入更稳定。
三维有限元分析:利用计算机软件将不规则体利用微积分的方法进行无限划分为三棱锥体,通过计算规则的三棱锥体的应力和应变变化,从而分析不规则体的变化的一种方法,该方法常用于航空航天、医学等领域。
 
背景:在口腔正畸中,颧下嵴区微植体支抗可避免损伤牙根,又可实现上牙列无阻碍的整体移动,然而其远移上牙列在其牙体本身和牙槽骨应力和应变将会产生何种改变,国内外鲜有报道。
目的:建立颧下嵴区微植体不同高度支抗远移上牙列的三维有限元模型,并进行生物力学分析。
方法:获取1名正畸科就诊的女性患者锥形束CT数据,以Dicom格式保存后导入Mimics16.01软件,通过自动和手动选择边界,将右上颌骨及牙齿三维重建,再利用Geomagic 8.0软件删除噪点和光滑处理,导入Mimics16.01软件,通过其3 Matics软件进行面/体网格划分,利用ProE5.0软件建立上颌牙托槽、弓丝及牵引钩和种植体的三维模型,并与上颌及牙三维模型一同导入ANSYS13.0软件,行装配和应力应变分析。
结果与结论:①成功建立了颧下嵴区微植体支抗远移上牙列三维有限元模型,此模型符合解剖学形态;②随着牵引钩高度的增高(1,4,7,10 mm),上颌牙列垂直方向应力逐渐增加,而与水平分力的变化无关;③随着牵引钩高度的增高,矢状轴上中切牙、尖牙和第一磨牙牙冠中点的应变逐渐降低;中切牙、尖牙的牙根应变逐渐降低,第一磨牙牙根应变无变化。随着牵引钩高度的增高,垂直轴上中切牙牙冠中点与牙根的应变逐渐增大;尖牙牙冠中点的应变逐渐增加,牙根应变逐渐减小;第一磨牙牙冠中点的应变变化不明显,牙根应变逐渐减小。牙列由顺时针旋转变为逆时针旋转;④结果表明,颧下嵴区微植体不同高度支抗远移上牙列三维有限元模型与真实解剖结构一致,能够作为研究颧下嵴区微植体支抗远移上牙列生物力学研究的基础,上牙列阻抗中心在弓丝4-7 mm的位置,可作为颧下嵴区微植体支抗植入点。

关键词: 生物材料, 口腔材料, 微植体, 颧下嵴, 正畸, 上颌牙, 有限元, 生物力学

Abstract:

BACKGROUND: In orthodontics, micro-implant anchorage in the infrazygomatic crest that cannot damage the tooth root can achieve an unobstructed overall movement of the upper dentition. However, little is reported on the stress and strain of the tooth and alveolar bone during the distal movement of the upper dentition.
OBJECTIVE: To set up a three-dimensional finite element model to perform a biomechanical analysis of micro-implant anchorage in the infrazygomatic crest for the distal displacement of the upper dentition at different heights.
METHODS: Cone-beam CT data from a female patient admitted for orthodontic treatment was saved in Dicom format, and imported into Mimics 16.01 software. Then, a three-dimensional model of the right maxilla and tooth dentition was made by automatically and manually selecting boundaries. The model was imported into Geomagic8.0 for removal of noise dots and smooth processing, and then it was imported into the Mimics16.01 software and meshed for the surface/body through 3 Matics software. Afterwards, three-dimensional models maxillary denture, archwires and traction hooks and implants were established by ProE5.0, and all the models were imported into ANSYS13.0 and assembled and analyzed for stress and strain analysis.
RESULTS AND CONCLUSION: We successfully established the three-dimensional finite element model for biomechanical analysis of micro-implant anchorage in the infrazygomatic crest for the distal displacement of the upper dentition at different heights, and this model conformed to the anatomic features. With the increase of the height of traction hooks (1, 4, 7, 10 mm), the vertical stress of the maxillary teeth increased gradually, and had no correlation with the change of the horizontal stress. With the increase of the height of traction hooks, at the sagittal axis, the strain at midpoints of middle incisors, canine teeth, and first molars decreased gradually and the strain at the root of middle incisors and canine teeth also decreased gradually, but there was no change in the strain at the root of first molars. With the increase of the height of traction hooks, at the vertical axis, the strain at the midpoints and tooth root of middle incisors increased, while the strain of canine crown increased gradually and that of the canine root decreased; the strain at the midpoint of first molars changed a little, and the strain of the tooth root decreased gradually. The dentition rotated from clockwise to counterclockwise. To conclude, the three-dimensional finite element model made in the study is consistent with the anatomic structure, which provides a basis for biomechanical analysis of micro-implant anchorage in the infrazygomatic crest for the distal displacement of the upper dentition. The upper dentition impedance center located in the position of 4 to 7 mm of the arch wire can be used as the microimplant support site in the infrazygomatic crest.

Key words: Orthodontic Anchorage Procedures, Finite Element Analysis, Biomechanics, Tissue Engineering

中图分类号: