中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (11): 2377-2384.doi: 10.12307/2025.373
• 组织构建综述 tissue construction review • 上一篇 下一篇
张佳乐,王富森,邱镇锐,樊鑫铭,邹吉龙,毕郑刚,孙佳冰
收稿日期:
2024-04-10
接受日期:
2024-06-01
出版日期:
2025-04-18
发布日期:
2024-08-12
通讯作者:
孙佳冰,主任医师,教授,博士生导师,哈尔滨医科大学附属第一医院骨科,黑龙江省哈尔滨市 150001
作者简介:
张佳乐,男,1998年生,黑龙江省肇东市人,汉族,硕士,主要从事脊柱外科研究。
基金资助:
Zhang Jiale, Wang Fusen, Qiu Zhenrui, Fan Xinming, Zou Jilong, Bi Zhenggang, Sun Jiabing
Received:
2024-04-10
Accepted:
2024-06-01
Online:
2025-04-18
Published:
2024-08-12
Contact:
Sun Jiabing, Chief physician, Professor, Doctoral supervisor, Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
About author:
Zhang Jiale, Master, Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
Supported by:
摘要:
文题释义:
运动疗法:通过某些运动方式使患者获得局部或全身运动功能、感觉功能恢复的训练方法。
慢性非特异性下背痛:腰痛持续 > 3个月且无特定的原因。
背景:目前运动疗法是非药物治疗腰痛的有效方法,运动疗法可通过骨骼和肌肉之间的机械-化学偶联维持腰椎的稳定,但目前尚无关于运动疗法通过机械-化学偶联缓解慢性非特异性下背痛之间研究进展及最佳治疗方案的明确阐述。
目的:综述运动疗法时椎旁肌通过机械-化学偶联影响腰椎稳定性进而缓解慢性非特异性下背痛的相关研究进展,以及目前运动疗法治疗慢性非特异性下背痛的最佳方案。
方法:在万方数据库、中国知网、维普、Web of Science和PubMed数据库进行文献检索,以“慢性非特异性下背痛,腰椎稳定,椎旁肌,运动疗法”为中文检索词,以“chronic nonspecific low back pain,lumbar stabilization,paravertebral muscle,exercise therapy”为英文检索词,检索各数据库建库至2024年1月发表的相关文献,最终纳入93篇文献进行归纳总结。
结果与结论:运动疗法可以通过适当的机械刺激作用于椎旁肌和骨骼并使其产生相应的变化。运动疗法主要通过机械-化学偶联方式来提高椎旁肌的质量,进而维持腰椎稳定,从而更好地缓解慢性非特异性下背痛,是慢性非特异性下背痛的重要干预措施。但是,对于运动疗法通过腰椎稳定来治疗慢性非特异性下背痛的确切有效方案尚无明确报道。个体化运动方案的制定对于慢性非特异性下背痛的治疗和预后尤为重要。同一个体的肌肉质量与骨骼质量是密切相关的,影像学评估椎旁肌的质量和体积对于疾病的发现和干预具有重要意义。
https://orcid.org/0009-0005-3561-6619(张佳乐)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
张佳乐, 王富森, 邱镇锐, 樊鑫铭, 邹吉龙, 毕郑刚, 孙佳冰. 运动疗法通过机械-化学偶联治疗慢性非特异性下背痛[J]. 中国组织工程研究, 2025, 29(11): 2377-2384.
Zhang Jiale, Wang Fusen, Qiu Zhenrui, Fan Xinming, Zou Jilong, Bi Zhenggang, Sun Jiabing. Exercise therapy for the treatment of chronic nonspecific lower back pain through mechanical-chemical coupling[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(11): 2377-2384.
[1] BALAGUÉ F, MANNION AF, PELLISÉ F, et al. Non-specific low back pain. Lancet. 2012;379(9814):482-491. [2] HOY D, MARCH L, BROOKS P, et al. The global burden of low back pain: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014;73:968-974. [3] NIU S, YANG H, GAO J, et al. Correlation between sagittal parameters and disability of patients with nonspecific chronic low back pain: a cross-sectional study of 435 subjects. Spine J. 2024;24(4):634-643. [4] MALFLIET A, ICKMANS K, HUYSMANS E, et al. Best evidence rehabilitation for chronic pain part 3: low Back pain. J Clin Med. 2019; 8(7):1063. [5] National Research Council (US) and Institute of Medicine (US) Panel on Musculoskeletal Disorders and the Workplace. Musculoskeletal Disorders and the Workplace: Low Back and Upper Extremities. Washington (DC): National Academies Press (US);2001. [6] PANJABI MM. Panjabi-1992-the stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992;5:390-396. discussion: 397. [7] PANJABI MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5(4): 383-389. [8] CHOLEWICKI J, MCGILL SM. Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin Biomech (Bristol, Avon). 1996;11(1):1-15. [9] STOLZENBERG N, BELAVY D L, RAWER R, et al. Whole-body vibration versus proprioceptive training on postural control in post-menopausal osteopenic women. Gait Posture. 2013;38:416-420. [10] PICKE AK, SYLOW L, MØLLER LLV, et al. Differential effects of high-fat diet and exercise training on bone and energy metabolism. Bone. 2018;116:120-134. [11] BONEWALD LF. Use it or lose it to age: A review of bone and muscle communication. Bone. 2019;120:212-218. [12] SEARLE A, SPINK M, HO A, et al. Exercise interventions for the treatment of chronic low back pain: a systematic review and meta-analysis of randomised controlled trials. Clin Rehabil. 2015;29(12):1155-1167. [13] HRKAĆ A, BILIĆ D, ČERNY-OBRDALJ E, et al. Comparison of supervised exercise therapy with or without biopsychosocial approach for chronic nonspecific low back pain: a randomized controlled trial. BMC Musculoskelet Disord. 2022;23(1):966. [14] BARKER AL, TALEVSKI J, BOHENSKY MA, et al. Feasibility of Pilates exercise to decrease falls risk: A pilot randomized controlled trial in community-dwelling older people. Clin Rehabil. 2016;30:984-996. [15] SOFIANIDIS G, DIMITRIOU AM, HATZITAKI V. A comparative study of the effects of pilates and Latin dance on static and dynamic balance in older adults. J Aging Phys Act. 2017;25:412-419. [16] LIPOSCKI DB, DA SILVA NAGATA IF, SILVANO GA, et al. Influence of a Pilates exercise program on the quality of life of sedentary elderly people: A randomized clinical trial. J Bodyw Mov Ther. 2019;23:390-393. [17] LIMA M, SILVA B, ROCHA-RODRIGUES S, et al. The impact of an 8-week Pilates-based physical training program on functional mobility: Data from a septuagenarian group. Biomed Hum Kinet. 2021;13:11-19. [18] LIFSHITZ L, BAR SELA S, GAL N, et al. Iliopsoas the Hidden Muscle: Anatomy, Diagnosis, and Treatment. Curr Sports Med Rep. 2020;19(6): 235-243. [19] CAWTHON PM. Assessment of lean mass and physical performance in sarcopenia. J Clin Densitom. 2015;18:467-471. [20] KAJIKI Y, TSUJI H, MISAWA H, et al. Psoas muscle index predicts osteoporosis and fracture risk in individuals with degenerative spinal disease. Nutrition. 2022;93:111428. [21] KURUMISAWA S, KAWAHITO K. The psoas muscle index as a predictor of long-term survival after cardiac surgery for hemodialysis-dependent patients. J Artif Organs. 2019;22:214-221. [22] LEE D, KANG M. Correlation between psoas muscle index and degeneration of spinal back muscle in patients with back pain. Healthcare. 2021;9:1189. [23] BUSTAMI FM. A new description of the lumbar erector spinae muscle in man. J Anat. 1986;144:81-91. [24] MACINTOSH JE, VALENCIA F, BOGDUK N, et al. The morphology of the human lumbar multifidus. Clin Biomechan. 1986;1(4):196-204. [25] KIM CW, GOTTSCHALK LJ, ENG C, et al. The multifidus muscle is the strongest stabilizer of the lumbar spine. Spine J. 2007;7:76S. [26] GRZONKOWSKA M, BAUMGART M, BADURA M, et al. Quantitative anatomy of the growing quadratus lumborum in the human foetus. Surg Radiol Anat. 2018;40(1):91-98. [27] BORDONI B, VARACALLO M. Anatomy, Abdomen and Pelvis, Quadratus Lumborum. 2023 Jul 17. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. [28] IZZO R, GUARIERI G, GUGLIELMI G, et al. Biomechanics of the spine. Part I: spinal stability. Eur J Radiol. 2013;82(1):118-126. [29] VASSELEN O, UNSGAARD-TONDEL M, WESTAD C, et al. Effect of core stability exercises on feed-forward activation of deep abdominal muscles in chronic low back pain: a randomized controlled trial. Spine (Phila Pa 1976). 2012;37(13):1101-1108. [30] HEBERT JJ, KOPPENHAVER SL, MAGEL JS, et al. The relationship of transversus abdominis and lumbar multifidus activation and prognostic factors for clinical success with a stabilization exercise program: a cross-sectional study. Arch Phys Med Rehabil. 2010;91(1):78-85. [31] HODGES PW, GANDEVIA SC. Changes in intra-abdominal pressure during postural and respiratory activation of the human diaphragm. J App1 Physiol (1985). 2000;89(3):967-976. [32] WONG C. Mechanism of right thoracic adolescent idiopathic scoliosis at risk for progression; a unifying pathway of development by normal growth and imbalance. Scoliosis. 2015;10:2. [33] BECKER L, LI Z, WANG Z, et al. Adolescent idiopathic scoliosis is associated with muscle area asymmetries in the lumbar spine. Eur Spine J. 2023;32(11):3979-3986. [34] AMINI B, BOYLE SP, BOUTIN RD, et al. Approaches to Assessment of Muscle Mass and Myosteatosis on Computed Tomography: A Systematic Review. J Gerontol A Biol Sci Med Sci. 2019;74(10):1671-1678. [35] EBADI M, WANG CW, LAI JC, et al. From the Fitness, Life Enhancement, and Exercise in Liver Transplantation (FLEXIT) Consortium. Poor performance of psoas muscle index for identification of patients with higher waitlist mortality risk in cirrhosis. J Cachexia Sarcopenia Muscle. 2018;9(6):1053-1062. [36] DERSTINE BA, HOLCOMBE SA, GOULSON RL, et al. Quantifying sarcopenia reference values using lumbar and thoracic muscle areas in a healthy population. J Nutr Health Aging. 2017;21(10):180-185. [37] YAJIMA T, ARAO M, YAJIMA K. Psoas muscle index and psoas muscle density as predictors of mortality in patients undergoing hemodialysis. Sci Rep. 2022;12(1):10496. [38] TEICHTAHL AJ, URQUHART DM, WANG Y, et al. Fat infiltration of paraspinal muscles is associated with low back pain, disability, and structural abnormalities in community-based adults. Spine J. 2015;15: 1593-1601. [39] KIM M, CHON J, LEE SA, et al. Does Unilateral Lumbosacral Radiculopathy Affect the Association between Lumbar Spinal Muscle Morphometry and Bone Mineral Density? Int J Environ Res Public Health. 2021;18(24):13155. [40] KAWAO N, KAJI H. Interactions between muscle tissues and bone metabolism. J Cell Biochem. 2015;116:687-695. [41] OHYAMA S, AOKI Y, INOUE M, et al. The Quantity and Quality of Lumbar Muscles and Lumbopelvic Parameters in Patients With Degenerative Spondylolisthesis. Cureus. 2021;13(10):e18428. [42] WANG G, KARKI SB, XU S, et al. Quantitative MRI and X-ray analysis of disc degeneration and paraspinal muscle changes in degenerative spondylolisthesis. J Back Musculoskelet Rehabil. 2015;28:277-285. [43] XIA W, FU H, ZHU Z, et al. Association between back muscle degeneration and spinal-pelvic parameters in patients with degenerative spinal kyphosis. BMC Musculoskelet Disord. 2019;20:454. [44] SCHULLER S, CHARLES YP, STEIB JP. Sagittal spinopelvic alignment and body mass index in patients with degenerative spondylolisthesis. Eur Spine J. 2011;20:713-719. [45] GARCÍA-RAMOS CL, VALENZUELA-GONZÁLEZ J, BAEZA-ÁLVAREZ VB, et al. Lumbar degenerative spondylolisthesis II: treatment and controversies. Acta Ortop Mex. 2020;34(6):433-440. [46] CAO B, ZUO Y, XU Y, et al. Correlation between fat infiltration of paraspinal muscle and L4 degenerative lumbar spondylolisthesis in asymptomatic adults. Asian J Surg. 2023;46(2):834-840. [47] ZUO YQ, GAO ZH, WANG Z, et al. Utility of multidetector computed tomography quantitative measurements in identifying sarcopenia: a propensity score matched study. Skeletal Radiol. 2022;51(6):1303-1312. [48] CHANG MY, PARK Y, HA JW, et al. Paraspinal lean muscle mass measurement using spine MRI as a predictor of adjacent segment disease after lumbar fusion: a propensity score-matched case-control analysis. AJR Am J Roentgenol. 2019;212(6):1310-1317. [49] BAWA M, SCHIMIZZI AL, LEEK B, et al. Paraspinal muscle vasculature contributes to posterolateral spinal fusion. Spine (Phila Pa 1976). 2006; 31:891-896. [50] GONG Z, LI D, ZOU F, et al. Low lumbar multifidus muscle status and bone mineral density are important risk factors for adjacent segment disease after lumbar fusion: a case-control study. J Orthop Surg Res. 2022;17(1):490. [51] CHEN M, ZHANG P, LAI J, et al. A correlation study of preoperative lumbar paraspinal muscle quality and L5-S1 lumbar foraminal stenosis degeneration after L4-5 TLIF. J Orthop Surg Res. 2023;18(1):731. [52] KHALID SI, NUNNA RS, MAASARANI S, et al. Association of Osteopenia and Osteoporosis with Higher Rates of Pseudarthrosis and Revision Surgery in Adult Patients Undergoing Single-Level Lumbar Fusion. Neurosurg. Focus. 2020;49:1-7. [53] TAGLIAFERRI C, WITTRANT Y, DAVICCO MJ, et al. Muscle and bone, two interconnected tissues. Ageing Res Rev. 2015;21:55-70. [54] TERRACCIANO C, CELI M, LECCE D, et al. Differential features of muscle fiber atrophy in osteoporosis and osteoarthritis. Osteoporos. Int. 2013; 24:1095-1100. [55] JEON I, KIM S W, YU D. Paraspinal muscle fatty degeneration as a predictor of progressive vertebral collapse in osteoporotic vertebral compression fractures. Spine J. 2022;22(2):313-320. [56] LI X, ZHANG Y, XIE Y, et al. Correlation Between Bone Mineral Density (BMD) and Paraspinal Muscle Fat Infiltration Based on QCT: A Cross-Sectional Study. Calcif Tissue Int. 2022;110(6):666-673. [57] KOS N, GRADISNIK L, VELNAR T. A brief review of the degenerative intervertebral disc disease. Med Arch. 2019;73(6):421-424. [58] OZCAN-EKSI EE, EKSI MS, TURGUT VU, et al. Reciprocal relationship between multifidus and psoas at L4–L5 level in women with low back pain. Br J Neurosurg. 2021;35(2):220-228. [59] HODGES PW, JAMES G, BLOMSTER L, et al. Can proinflammatory cytokine gene expression explain multifidus muscle fiber changes after an intervertebral disc lesion? Spine (Phila Pa 1976) 2014;39(13):1010-1017. [60] SUN D, LIU P, CHENG J, et al. Correlation between intervertebral disc degeneration, paraspinal muscle atrophy, and lumbar facet joints degeneration in patients with lumbar disc herniation. BMC Musculoskelet Disord. 2017;18(1):167. [61] SHI L, YAN B, JIAO Y, et al. Correlation between the fatty infiltration of paraspinal muscles and disc degeneration and the underlying mechanism. BMC Musculoskelet Disord. 2022;23(1):509. [62] RUSSO M, DECKERS K, ELDABE S, et al. Muscle Control and Non-specific Chronic Low Back Pain. Neuromodulation. 2018;21(1):1-9. [63] HAMRICK MW, MCGEE-LAWRENCE ME, FRECHETTE DM. Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity. Front Endocrinol (Lausanne). 2016;7:69. [64] KIRKALDY-WILLIS WH, WEDGE JH, YONG-HING K, et al. Pathology and pathogenesis of lumbar spondylosis and stenosis. Spine (Phila Pa 1976). 1978;3(4):319-328. [65] HERRMANN M, ENGELKE K, EBERT R, et al. Interactions between Muscle and Bone-Where Physics Meets Biology. Biomolecules. 2020; 10(3):432. [66] LAURITZEN HPMM, BRANDAUER J, SCHJERLING P, et al. Contraction and AICAR StimulateIL-6 Vesicle Depletion From Skeletal Muscle Fibers In Vivo. Diabetes. 2013;62:3081-3092. [67] MIKOLAJEWICZ N, SEHAYEK S, WISEMAN PW, et al. Transmission of Mechanical Information by Purinergic Signaling. Biophys J. 2019;116: 2009-2022. [68] NACHURY MV, MICK D. Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Boil. 2019;20:389-405. [69] DONNALOJA F, JACCHETTI E, SONCINI M, et al. Mechanosensing at the Nuclear Envelope by Nuclear Pore Complex Stretch Activation and Its Effect in Physiology and Pathology. Front Physiol. 2019;10:896. [70] ROCHEFORT GY, PALLU S, BENHAMOU CL. Osteocyte: the unrecognized side of bone tissue. Osteoporos Int. 2010;21:1457-1469. [71] KIM JA, ROH E, HONG SH, et al. Association of serum sclerostin levels with low skeletal muscle mass: The Korean Sarcopenic Obesity Study (KSOS). Bone. 2019;128:115053. [72] YAKAR S, ROSEN CJ, BEAMER WG, et al. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest. 2002;110(6): 771-781. [73] ADHIKARY S, CHOUDHARY D, TRIPATHI AK, et al. FGF-2 targets sclerostin in bone and myostatin in skeletal muscle to mitigate the deleterious effects of glucocorticoid on musculoskeletal degradation. Life Sci. 2019; 229:261-276. [74] ANNIBALINI G, CONTARELLI S, LUCERTINI F, et al. Muscle and Systemic Molecular Responses to a Single Flywheel Based Iso-Inertial Training Session in Resistance-Trained Men. Front. Physiol. 2019;10:554. [75] MORRELL AE, BROWN GN, ROBINSON ST, et al. Mechanically induced Ca2+ oscillations in osteocytes release extracellular vesicles and enhance bone formation. Bone Res.2018;6:6. [76] BITTEL DC, JAISWAL JK. Contribution of Extracellular Vesicles in Rebuilding Injured Muscles. Front Physiol. 2019;10:828. [77] MURRAY LM, KRASNODEMBSKAYA A. Concise Review: Intercellular Communication Via Organelle Transfer in the Biology and Therapeutic Applications of Stem Cells. Stem Cells. 2018;37:14-25. [78] LI J, WANG Y, ZHANG X, et al. Associations of muscle size and fatty infiltration with bone mineral density of the proximal femur bone. Front Endocrinol (Lausanne). 2022;13:990487. [79] FERNANDEZ-REAL JM, IZQUIERDO M, ORTEGA F, et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab. 2009;94(1):237-245. [80] GIRGIS CM, MOKBEL N, DIGIROLAMO DJ. Therapies for musculoskeletal disease: can we treat two birds with one stone? Curr Osteoporos Rep. 2014;12(2):142-153. [81] AIRAKSINEN O, BROX JI, CEDRASCHI C, et al. Chapter 4. European guidelines for the management of chronic nonspecific low back pain. Eur Spine J. 2006;15(Suppl. 2):S192-S300. [82] WANG XQ, ZHENG JJ, YU ZW, et al. A meta-analysis of core stability exercise versus general exercise for chronic low back pain. PLoS One. 2012;7:e52082. [83] BOGDANIS GC. Effects of physical activity and inactivity on muscle fatigue. Front Physiol.2012;3:142. [84] KRAVITZ E, MOORE ME, GLAROS A. Paralumbar muscle activity in chronic low back pain. Arch Phys Med Rehabil. 1981;62(4):172-176. [85] HAYDEN JA, ELLIS J, OGILVIE R, et al. Exercise therapy for chronic low back pain. Cochrane Database Syst Rev. 2021;9(9):CD009790. [86] OWEN PJ, MILLER CT, MUNDELL NL, et al. Which specific modes of exercise training are most effective for treating low back pain? Network meta-analysis. Br J Sports Med. 2020;54(21):1279-1287. [87] CALATAYUD J, GUZMÁN-GONZÁLEZ B, ANDERSEN LL, et al. Effectiveness of a Group-Based Progressive Strength Training in Primary Care to Improve the Recurrence of Low Back Pain Exacerbations and Function: A Randomised Trial. Int J Environ Res Public Health. 2020;17(22):8326 [88] VAN DILLEN LR, LANIER VM, STEGER-MAY K, et al. Effect of Motor Skill Training in Functional Activities vs Strength and Flexibility Exercise on Function in People With Chronic Low Back Pain: A Randomized Clinical Trial. JAMA Neurol. 2021;78(4):385-395. [89] BATıBAY S, KÜLCÜ DG, KALEOĞLU Ö, et al. Effect of Pilates mat exercise and home exercise programs on pain, functional level, and core muscle thickness in women with chronic low back pain. J Orthop Sci. 2021;26(6):979-985. [90] VERBRUGGHE J, HANSEN D, DEMOULIN C, et al. High Intensity Training Is an Effective Modality to Improve Long-Term Disability and Exercise Capacity in Chronic Nonspecific Low Back Pain: A Randomized Controlled Trial. Int J Environ Res Public Health. 2021;18(20):10779. [91] VERBRUGGHE J, AGTEN A, STEVENS S, et al. High intensity training improves symptoms of central sensitization at six-month follow-up in persons with chronic nonspecific low back pain: Secondary analysis of a randomized controlled trial. Braz J Phys Ther. 2023;27(2):100496. [92] ZHANG Z, ZHANG C, LI Y, et al. Lipid and metabolic alteration involvement in physiotherapy for chronic nonspecific low back pain. Lipids Health Dis. 2022;21(1):125. [93] PANG Z, ZHOU G, EWALD J, et al. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc. 2022;17(8):1735-1761. |
[1] | 王 娟, 王广兰, 左会武. 运动疗法对前交叉韧带重建后康复疗效影响的网状Meta分析[J]. 中国组织工程研究, 2025, 29(8): 1714-1726. |
[2] | 朱传喜, 邱 龙, 李凌絮, 汲广成 . 中药结合头针运动疗法改善缺血性脑卒中大鼠肢体痉挛[J]. 中国组织工程研究, 2025, 29(35): 7571-7577. |
[3] | 吴 悦, 任 爽, 黄红拾, 代瑞兰, 敖英芳, 苟 波. 运动疗法激活臀肌改善青年男性膝前痛患者的下肢肌力[J]. 中国组织工程研究, 2025, 29(18): 3798-3803. |
[4] | 梁佳佳, 孙姣姣, 刘文洁, 邢 政, 李 奇, 李庆雯, 褚晓蕾. 肌电生物反馈疗法与脊髓损伤患者运动功能的恢复[J]. 中国组织工程研究, 2025, 29(14): 3002-3010. |
[5] | 吴 菁, 姚英策, 杨晓巍, 薛博士, 赵建斌, 杨 辰, 栾天峰, 周志鹏. 肌力训练与神经肌肉电刺激干预髌股关节痛患者下肢功能和生物力学的变化[J]. 中国组织工程研究, 2024, 28(9): 1365-1371. |
[6] | 张锦璞, 王军利, 张思奇, 陈家豪, 杨秋实. 运动干预纤维肌痛综合征有效性的Meta分析[J]. 中国组织工程研究, 2024, 28(32): 5210-5216. |
[7] | 李 超, 张佩佩, 徐朦婷, 李琳琳, 丁江涛, 刘西花, 毕鸿雁. 肌骨超声评价呼吸训练改善慢性非特异性下背痛患者多裂肌的形态学改变[J]. 中国组织工程研究, 2023, 27(9): 1417-1421. |
[8] | 周劲衍, 钟远鸣, 李智斐, 许 伟, 张家立, 梁梓扬. 压力生物反馈训练治疗颈椎病[J]. 中国组织工程研究, 2023, 27(31): 5052-5057. |
[9] | 孙晓蕾, 张晓辉, 林佳声, 廖八根. 器具辅助松解结合特定运动治疗RigoA型脊柱侧凸:改善躯干旋转角及减轻背部疼痛[J]. 中国组织工程研究, 2023, 27(18): 2871-2877. |
[10] | 宋校能, 胡玲慧, 黄德胜, 周绪昌, 吴 伟. 运动防治膝骨关节炎的关键因素及注意事项[J]. 中国组织工程研究, 2020, 24(2): 289-295. |
[11] | 刘 辉, 刘 波, 张 鑫, 赵卫侠, 严 攀, 敬竹子, 梁俊豪, 沈 海. 开链和闭链训练治疗膝关节半月板损伤[J]. 中国组织工程研究, 2020, 24(11): 1733-1737. |
[12] | 甘东浩,乔全来,陈德强,谭国庆,薛海鹏,徐展望. Waveflex半刚性内固定治疗腰椎间盘突出症的生物力学优势[J]. 中国组织工程研究, 2019, 23(36): 5830-5835. |
[13] | 马钧峰,汪 伟,王紫括,江泽华,龙明星,袁建军,朱如森,胡 炜,张学利. 腰椎MRI评价椎间小关节积液与退变性腰椎滑脱稳定性的相关性[J]. 中国组织工程研究, 2019, 23(24): 3845-3851. |
[14] | 姜 勇,郑益丽,徐盛嘉. 生物力学背景下物理疗法的研究与进展[J]. 中国组织工程研究, 2019, 23(12): 1936-1942. |
[15] | 刘 潇,刘耀升,刘蜀彬. 有限元法分析腰椎融合与非融合后的应力分布[J]. 中国组织工程研究, 2018, 22(3): 409-414. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||