中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (11): 2385-2393.doi: 10.12307/2025.367

• 组织构建综述 tissue construction review • 上一篇    下一篇

深度学习在口腔影像分析中的应用

杨予萱,谭静怡,周鹂鹂,边子睿,陈伊凡,吴燕岷   

  1. 浙江大学医学院附属第二医院牙周病专科,浙江省杭州市  310009

  • 收稿日期:2024-03-09 接受日期:2024-05-25 出版日期:2025-04-18 发布日期:2024-08-12
  • 通讯作者: 吴燕岷,博士,主任医师,浙江大学医学院附属第二医院牙周病专科,浙江省杭州市 310009
  • 作者简介:杨予萱,女,1999年生,浙江省湖州市人,汉族,浙江大学在读硕士,主要从事口腔医学人工智能、骨稳态方面的研究。
  • 基金资助:
    浙江省基础公益研究计划项目(LY24H140003),项目负责人:谭静怡;浙江省医药卫生科技计划项目(2022498153),项目负责人:谭静怡;浙江省医药卫生科技计划项目(2021427110),项目负责人:周鹂鹂

Application of deep learning in oral imaging analysis

Yang Yuxuan, Tan Jingyi, Zhou Lili, Bian Zirui, Chen Yifan, Wu Yanmin   

  1. Department of Periodontology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
  • Received:2024-03-09 Accepted:2024-05-25 Online:2025-04-18 Published:2024-08-12
  • Contact: Wu Yanmin, MD, Chief physician, Department of Periodontology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
  • About author:Yang Yuxuan, Master candidate, Department of Periodontology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
  • Supported by:
    Basic Public Welfare Research Program of Zhejiang Province, No. LY24H140003 (to TJY); Zhejiang Province Medical and Health Science and Technology Program, Nos. 2022498153 (to TJY) and 2021427110 (to ZLL) 

摘要:


文题释义:
深度学习:是人工智能领域的一个新的研究方向,通过学习样本数据的内在规律和表示层次,让机器具备与临床医生相似甚至更好的影像数据分析能力。
口腔医学:主要研究口腔及颌面部疾病的诊断、治疗、预防等,临床上主要包括牙周病学、口腔修复学、口腔颌面外科学、口腔正畸学、口腔种植学、口腔黏膜病学、牙体牙髓病学等。

背景:近年来深度学习技术越来越多地被运用于口腔医学领域,提高了口腔影像分析的效率及准确率,推动了口腔智能医学的迅速发展。
目的:基于口腔影像,阐述深度学习在口腔疾病诊断和治疗方案决策方面的研究现状、优势与局限性,探讨深度学习技术背景下口腔医学变革的新方向。
方法:应用计算机检索PubMed数据库中2017年1月至2024年1月发表的深度学习在口腔医学影像领域应用的相关文献,检索词为“deep learning,artificial intelligence,stomatology,oral medical imaging”等,按入组标准筛选后最终纳入80篇文献进行综述。
结果与结论:①经典的深度学习模型包括人工神经网络、卷积神经网络、递归神经网络和生成对抗网络等,学者们以或竞争或联合的形式运用这些模型,实现更高效的对口腔医学影像的解释。②在口腔医学领域,疾病诊断和治疗方案的制定在很大程度上依赖医学影像资料的判读,而深度学习技术拥有强大的图像处理能力,无论是在辅助诊断龋齿、根尖周炎、牙根纵裂、牙周病、颌骨囊肿等疾病方面,还是在辅助第三磨牙拔除术、颈淋巴结清扫术等治疗操作的术前评估方面,深度学习都能帮助临床医生提高决策的准确率与效率。③尽管深度学习有望成为口腔疾病诊治的重要辅助工具,但它在模型技术、安全伦理、法律监管方面仍有一定的局限性,未来的研究应侧重于证明深度学习的可推广性、稳健性和临床实用性,寻找将深度学习自动化决策支持系统应用于常规临床工作流程中的最佳方式。
https://orcid.org/0009-0002-8511-1780(杨予萱)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 深度学习, 口腔医学, 口腔影像, 疾病诊断, 口腔智能医学

Abstract: BACKGROUND: In recent years, deep learning technologies have been increasingly applied in the field of oral medicine, enhancing the efficiency and accuracy of oral imaging analysis and promoting the rapid development of intelligent oral medicine.
OBJECTIVE: To elaborate the current research status, advantages, and limitations of deep learning based on oral imaging in the diagnosis and treatment decision-making of oral diseases, as well as future prospects, exploring new directions for the transformation of oral medicine under the backdrop of deep learning technology.
METHODS: PubMed was searched for literature related to deep learning in oral medical imaging published from January 2017 to January 2024 with the search terms “deep learning, artificial intelligence, stomatology, oral medical imaging.” According to the inclusion criteria, 80 papers were finally included for review.
RESULTS AND CONCLUSION: (1) Classic deep learning models include artificial neural networks, convolutional neural networks, recurrent neural networks, and generative adversarial networks. Scholars have used these models in competitive or cooperative forms to achieve more efficient interpretation of oral medical images. (2) In the field of oral medicine, the diagnosis of diseases and the formulation of treatment plans largely depend on the interpretation of medical imaging data. Deep learning technology, with its strong image processing capabilities, aids in the diagnosis of diseases such as dental caries, periapical periodontitis, vertical root fractures, periodontal disease, and jaw cysts, as well as preoperative assessments for procedures such as third molar extraction and cervical lymph node dissection, helping clinicians improve the accuracy and efficiency of decision-making. (3) Although deep learning is promising as an important auxiliary tool for the diagnosis and treatment of oral diseases, it still has certain limitations in model technology, safety ethics, and legal regulation. Future research should focus on demonstrating the scalability, robustness, and clinical practicality of deep learning, and finding the best way to integrate automated deep learning decision support systems into routine clinical workflows.

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

Key words: deep learning, oral medicine, oral imaging, disease diagnosis, oral intelligence medicine

中图分类号: