[15]
ZHANG X, LIANG Y, LI W, et al. Development and evaluation of deep learning for screening dental caries from oral photographs. Oral Dis. 2022;28(1):173-181.
[16] KÜHNISCH J, MEYER O, HESENIUS M, et al. Caries Detection on Intraoral Images Using Artificial Intelligence. J Dent Res. 2022;101(2):158-165.
[17] HOLTKAMP A, ELHENNAWY K, CEJUDO GRANO DE ORO JE, et al. Generalizability of Deep Learning Models for Caries Detection in Near-Infrared Light Transillumination Images. J Clin Med. 2021;10(5):961.
[18] SCHWENDICKE F, ELHENNAWY K, PARIS S, et al. Deep learning for caries lesion detection in near-infrared light transillumination images: A pilot study. J Dent. 2020;92:103260.
[19] NGNAMSIE NJIMBOUOM S, LEE K, KIM JD. MMDCP: Multi-Modal Dental Caries Prediction for Decision Support System Using Deep Learning. Int J Environ Res Public Health. 2022;19(17):10928.
[20] TIBÚRCIO-MACHADO CS, MICHELON C, ZANATTA FB, et al. The global prevalence of apical periodontitis: a systematic review and meta-analysis. Int Endod J. 2021;54(5):712-735.
[21] CHEN H, LI H, ZHAO Y, et al. Dental disease detection on periapical radiographs based on deep convolutional neural networks. Int J Comput Assist Radiol Surg. 2021;16(4):649-661.
[22] LI S, LIU J, ZHOU Z, et al. Artificial intelligence for caries and periapical periodontitis detection. J Dent. 2022;122:104107.
[23] EZHOV M, GUSAREV M, GOLITSYNA M, et al. Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci Rep. 2021;11(1):15006.
[24] HADZIC A, URSCHLER M, PRESS JA, et al. Evaluating a Periapical Lesion Detection CNN on a Clinically Representative CBCT Dataset-A Validation Study. J Clin Med. 2023;13(1):197.
[25] LIAO WC, CHEN CH, PAN YH, et al. Vertical root fracture in non-endodontically and endodontically treated teeth: current understanding and future challenge. J Pers Med. 2021;11(12):1375.
[26] FUKUDA M, INAMOTO K, SHIBATA N, et al. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2020;36(4):337-343.
[27] HU Z, CAO D, HU Y, et al. Diagnosis of in vivo vertical root fracture using deep learning on cone-beam CT images. BMC Oral Health. 2022;22(1):382.
[28] YANG P, GUO X, MU C, et al. Detection of vertical root fractures by cone-beam computed tomography based on deep learning. Dentomaxillofac Radiol. 2023;52(3):20220345.
[29] ALOTAIBI G, AWAWDEH M, FAROOK FF, et al. Artificial intelligence (AI) diagnostic tools: utilizing a convolutional neural network (CNN) to assess periodontal bone level radiographically-a retrospective study. BMC Oral Health. 2022;22(1):399.
[30] LEE CT, KABIR T, NELSON J, et al. Use of the deep learning approach to measure alveolar bone level. J Clin Periodontol. 2022;49(3):260-269.
[31] CHEN CC, WU YF, AUNG LM, et al. Automatic recognition of teeth and periodontal bone loss measurement in digital radiographs using deep-learning artificial intelligence. J Dent Sci. 2023;18(3):1301-1309.
[32] CHANG HJ, LEE SJ, YONG TH, et al. Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis. Sci Rep. 2020;10(1):7531.
[33] JIANG L, CHEN D, CAO Z, et al. A two-stage deep learning architecture for radiographic staging of periodontal bone loss. BMC Oral Health. 2022;22(1):106.
[34] LI W, LIANG Y, ZHANG X, et al. A deep learning approach to automatic gingivitis screening based on classification and localization in RGB photos. Sci Rep. 2021;11(1):16831.
[35] ANDRADE KM, SILVA BPM, DE OLIVEIRA LR, et al. Automatic dental biofilm detection based on deep learning. J Clin Periodontol. 2023; 50(5):571-581.
[36] ALALHARITH DM, ALHARTHI HM, ALGHAMDI WM, et al. A Deep Learning-Based Approach for the Detection of Early Signs of Gingivitis in Orthodontic Patients Using Faster Region-Based Convolutional Neural Networks. Int J Environ Res Public Health. 2020;17(22):8447.
[37] VER BERNE J, SAADI SB, POLITIS C, et al. A deep learning approach for radiological detection and classification of radicular cysts and periapical granulomas. J Dent. 2023;135:104581.
[38] YANG H, JO E, KIM HJ, et al. Deep Learning for Automated Detection of Cyst and Tumors of the Jaw in Panoramic Radiographs. J Clin Med. 2020;9(6):1839.
[39] WATANABE H, ARIJI Y, FUKUDA M, et al. Deep learning object detection of maxillary cyst-like lesions on panoramic radiographs: preliminary study. Oral Radiol. 2021;37(3):487-493.
[40] LI M, PUNITHAKUMAR K, MAJOR PW, et al. Temporomandibular joint segmentation in MRI images using deep learning. J Dent. 2022; 127:104345.
[41] NOZAWA M, ITO H, ARIJI Y, et al. Automatic segmentation of the temporomandibular joint disc on magnetic resonance images using a deep learning technique. Dentomaxillofac Radiol. 2022;51(1): 20210185.
[42] VINAYAHALINGAM S, BERENDS B, BAAN F, et al. Deep learning for automated segmentation of the temporomandibular joint. J Dent. 2023;132:104475.
[43] JUNG W, LEE KE, SUH BJ, et al. Deep learning for osteoarthritis classification in temporomandibular joint. Oral Dis. 2023;29(3): 1050-1059.
[44] LEE YH, WON JH, KIM S, et al. Advantages of deep learning with convolutional neural network in detecting disc displacement of the temporomandibular joint in magnetic resonance imaging. Sci Rep. 2022;12(1):11352.
[45] RAHMAN TY, MAHANTA LB, DAS AK, et al. Automated oral squamous cell carcinoma identification using shape, texture and color features of whole image strips. Tissue Cell. 2020;63:101322.
[46] YOON K, KIM JY, KIM SJ, et al. Explainable deep learning-based clinical decision support engine for MRI-based automated diagnosis of temporomandibular joint anterior disk displacement. Comput Methods Programs Biomed. 2023;233:107465.
[47] KAO ZK, CHIU NT, WU HH, et al. Classifying Temporomandibular Disorder with Artificial Intelligent Architecture Using Magnetic Resonance Imaging. Ann Biomed Eng. 2023;51(3):517-526.
[48] KIM JY, KIM D, JEON KJ, et al. Using deep learning to predict temporomandibular joint disc perforation based on magnetic resonance imaging. Sci Rep. 2021;11(1):6680.
[49] LIN B, CHENG M, WANG S, et al. Automatic detection of anteriorly displaced temporomandibular joint discs on magnetic resonance images using a deep learning algorithm. Dentomaxillofac Radiol. 2022;51(3):20210341.
[50] YANG SY, LI SH, LIU JL, et al. Histopathology-Based Diagnosis of Oral Squamous Cell Carcinoma Using Deep Learning. J Dent Res. 2022; 101(11):1321-1327.
51] DAS N, HUSSAIN E, MAHANTA LB. Automated classification of cells into multiple classes in epithelial tissue of oral squamous cell carcinoma using transfer learning and convolutional neural network. Neural Netw. 2020;128:47-60.
[52] AUBREVILLE M, KNIPFER C, OETTER N, et al. Automatic Classification of Cancerous Tissue in Laserendomicroscopy Images of the Oral Cavity using Deep Learning. Sci Rep. 2017;7(1):11979.
[53] YANG Z, PAN H, SHANG J, et al. Deep-Learning-Based Automated Identification and Visualization of Oral Cancer in Optical Coherence Tomography Images. Biomedicines. 2023;11(3):802.
[54] VINAYAHALINGAM S, XI T, BERGÉ S, et al. Automated detection of third molars and mandibular nerve by deep learning. Sci Rep. 2019;9(1):9007.
[55] TAKEBE K, IMAI T, KUBOTA S, et al. Deep learning model for the automated evaluation of contact between the lower third molar and inferior alveolar nerve on panoramic radiography. J Dent Sci. 2023; 18(3):991-996.
[56] CARVALHO JS, LOTZ M, RUBI L, et al. Preinterventional Third-Molar Assessment Using Robust Machine Learning. J Dent Res. 2023;102(13): 1452-1459.
[57] LIM HK, JUNG SK, KIM SH, et al. Deep semi-supervised learning for automatic segmentation of inferior alveolar nerve using a convolutional neural network. BMC Oral Health. 2021;21(1):630.
[58] SUKEGAWA S, TANAKA F, HARA T, et al. Deep learning model for analyzing the relationship between mandibular third molar and inferior alveolar nerve in panoramic radiography. Sci Rep. 2022;12(1):16925.
[59] GONG Z, FENG W, SU X, et al. System for automatically assessing the likelihood of inferior alveolar nerve injury. Comput Biol Med. 2024;169:107923.
[60] ARIJI Y, KISE Y, FUKUDA M, et al. Segmentation of metastatic cervical lymph nodes from CT images of oral cancers using deep-learning technology. Dentomaxillofac Radiol. 2022;51(4):20210515.
[61] HUANG SY, HSU WL, LIU DW, et al. Identifying Lymph Nodes and Their Statuses from Pretreatment Computer Tomography Images of Patients with Head and Neck Cancer Using a Clinical-Data-Driven Deep Learning Algorithm. Cancers (Basel). 2023;15(24):5890.
[62] XU X, XI L, WEI L, et al. Deep learning assisted contrast-enhanced CT-based diagnosis of cervical lymph node metastasis of oral cancer: a retrospective study of 1466 cases. Eur Radiol. 2023;33(6):4303-4312.
[63] STRUCKMEIER AK, YEKTA E, AGAIMY A, et al. Diagnostic accuracy of contrast-enhanced computed tomography in assessing cervical lymph node status in patients with oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2023;149(19):17437-17450.
[64] CHEN Z, YU Y, LIU S, et al. A deep learning and radiomics fusion model based on contrast-enhanced computer tomography improves preoperative identification of cervical lymph node metastasis of oral squamous cell carcinoma. Clin Oral Investig. 2023;28(1):39.
[65] LEE JH, YU HJ, KIM MJ, et al. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. BMC Oral Health. 2020;20(1):270.
[66] DOT G, SCHOUMAN T, CHANG S, et al. Automatic 3-Dimensional Cephalometric Landmarking via Deep Learning. J Dent Res. 2022; 101(11):1380-1387.
[67] CHEN X, LIAN C, DENG HH, et al. Fast and Accurate Craniomaxillofacial Landmark Detection via 3D Faster R-CNN. IEEE Trans Med Imaging. 2021;40(12):3867-3878.
[68] ZHANG J, LIU M, WANG L, et al. Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization. Med Image Anal. 2020;60:101621.
[69] AYIDH ALQAHTANI K, JACOBS R, SMOLDERS A, et al. Deep convolutional neural network-based automated segmentation and classification of teeth with orthodontic brackets on cone-beam computed-tomographic images: a validation study. Eur J Orthod. 2023;45(2):169-174.
[70] XIAO Y, LIANG Q, ZHOU L, et al. Construction of a new automatic grading system for jaw bone mineral density level based on deep learning using cone beam computed tomography. Sci Rep. 2022; 12(1):12841.
[71] SAKAI T, LI H, SHIMADA T, et al. Development of artificial intelligence model for supporting implant drilling protocol decision making. J Prosthodont Res. 2022;67:360-365.
[72] KURT BAYRAKDAR S, ORHAN K, BAYRAKDAR IS, et al. A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med Imaging. 2021;21(1): 86.
[73] YANG M, LI C, YANG W, et al. Accurate gingival segmentation from 3D images with artificial intelligence: an animal pilot study. Prog Orthod. 2023;24(1): 14.
[74] SHERWOOD AA, Sherwood AI, Setzer FC, et al. A Deep Learning Approach to Segment and Classify C-Shaped Canal Morphologies in Mandibular Second Molars Using Cone-beam Computed Tomography. J Endod. 2021;47(12):1907-1916.
[75] YUAN F, DAI N, TIAN S, et al. Personalized design technique for the dental occlusal surface based on conditional generative adversarial networks. Int J Numer Method Biomed Eng. 2020;36(5):e3321.
[76] TIAN S, WANG M, DAI N, et al. DCPR-GAN: Dental Crown Prosthesis Restoration Using Two-Stage Generative Adversarial Networks. IEEE J Biomed Health Inform. 2022;26(1):151-160.
[77] BERNABE E, MARCENES W, HERNANDEZ CR, et al. Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017: a systematic analysis for the global burden of disease 2017 study. J Dent Res. 2020;99(4): 362-373.
[78] NISHIYAMA M, ISHIBASHI K, ARIJI Y, et al. Performance of deep learning models constructed using panoramic radiographs from two hospitals to diagnose fractures of the mandibular condyle. Dentomaxillofac Radiol. 2021;50(7): 20200611.
[79] KROIS J, GARCIA CANTU A, CHAURASIA A, et al. Generalizability of deep learning models for dental image analysis. Sci Rep. 2021;11(1): 6102.
[80] FINLAYSON SG, BOWERS JD, ITO J, et al. Adversarial attacks on medical machine learning. Science. 2019;363(6433): 1287-1289.